- •1.Краткая теория развития гидравлики. Понятие науки гидравлики. Методы гидравлических исследований.
- •3.Силы, действующие на жидкость. Понятие давления.
- •4.Основные свойства жидкостей.
- •5.Гидростатическое давление и его свойства.
- •6.Основное уравнение гидростатики. Гидростатический напор.
- •7.Дифференциальные уравнения Эйлера.
- •8.Абсолютное и избыточное (манометрическое) давление. Барометры и манометры
- •9.Вакуум. Пьезометры и вакуумметры.
- •10.Основное уравнение гидростатики. Потенциальная удельная энергия жидкости
- •11.Потенциальный (пьезометрический) напор.
- •12.Силы давления на плоские и кривые поверхности.
- •13.Центр давления.
- •14.Закон Архимеда. Плавание тел.
- •15.Понятие о движении жидкости как непрерывной деформации материальной среды.
- •16.Установившееся и неустановившееся движение жидкости. Напорное и безнапорное течение.
- •17.Линии токов жидкости и вихревые линии. Плавно и резко изменяющееся движение.
- •18.Элементарная струйка, поток жидкости, живое сечение. Гидравлический радиус, расход и средняя скорость.
- •19.Уравнение неразрывности. Понятие расхода.
- •20.Распределение сил в сплошной среде. Объемные и поверхностные силы.
- •21.Уравнение Бернулли для установившегося движения жидкости.
- •22.Геометрическая и энергетическая интерпретация уравнения Бернулли.
- •23.Полный (гидродинамический) напор. Принцип Вентури. Трубка пито.
- •24.Влияние различных факторов на движение жидкости.
- •25.Понятие о гидравлических сопротивлениях, виды потерь напора (местные и по длине). Кавитация
- •26.Касательные напряжения. Обобщенный закон Ньютона.
- •27.Ламинарный и турбулентный режимы движения жидкости. Критическое число Рейнольдса
- •28.Пульсации скоростей при турбулентном режиме, мгновенная и осредненная местные скорости
- •29.Потери напора по длине при ламинарном равномерном движении жидкости
- •30.Распределение скоростей по живому сечению в цилиндрической трубе при ламинарном режиме. Коэффициент Дарси при ламинарном движении.
- •31.Потери напора при турбулентном равномерном движении жидкости.
- •32.Механизм турбулизации потока: процесс перемешивания. Ядро течения и пристенный слой. Кавитация.
- •33.Полуэмпирические теории турбулентности
- •34.Коэффициент Дарси при турбулентном движении жидкости, экспериментальные методы его определения
- •35.Местные сопротивления, основные их виды.
- •36.Истечение жидкости из отверстий, насадков и из-под затворов
- •37.Гидравлический расчет простых и сложных трубопроводов. Простой трубопровод постоянного сечения
- •38.Соединения трубопроводов. Трубопроводы с концевой раздачей
- •39.Трубопроводы с насосной подачей жидкости. Гидравлический удар
- •40.Понятие объемной гидромашины. Насосы, гидродвигатели. Напор насоса
- •41.Принципиальные схемы объемных гидромашин (огм). Поршневые насосы
- •42.Классификация огм
- •43.Виды возвратно-поступательных и роторных гидромашин
- •44.Основные признаки роторных гидромашин. Основные термины и их определения
- •45.Величины, характеризующие рабочий процесс огм: подача (расход), рабочий объем, давление, мощность, кпд, частота вращения, крутящий момент
- •46.Классификация, конструктивные схемы и принцип действия огм
- •47.Шестеренные насосы с внешним и внутренним зацеплением
- •48.Винтовые машины. Шиберные (пластинчатые) гидромашины однократного и многократного действия
- •49.Радиально-поршневые гидромашины
- •50.Аксиально-поршневые гидромашины, основные их схемы
- •51.Обозначение элементов гидро- и пневмосистем.
- •52.Основные понятия и определения, принцип действия гидроприводов.
- •53.Гидроаппаратура гидропривдов. Гидрораспределители, классификация.
- •54.Гидродроссели и дросселирующие гидрораспределители. Дроссели.
- •56.Струйный гидрораспределитель и гидрораспределитель сопло-заслонка. Гидроклапаны. Типы клапанов: переливной, предохранительный, редукционный. Течения в них. Расчет гидроклапанов.
- •57.Объемное регулирование скорости выходного звена гидропривода. Дроссельное регулирование скорости выходного звена гидропривода при последовательном и параллельном включении дросселя.
- •58.Сравнение способов регулирования гидроприводов.
- •59.Статические характеристики объемного гидропривода с дроссельным регулированием.
- •60.Методы измерения параметров объемных гидроприводов. Измерение давления, расхода, температуры рабочих сред, частоты вращения и крутящего момента.
1.Краткая теория развития гидравлики. Понятие науки гидравлики. Методы гидравлических исследований.
Раздел механики, в котором изучают равновесие и движение жидкости, а также силовое взаимодействие жидкостью и обтекаемыми ею телами или ограничивающими её поверхностями, называется гидромеханикой.Науку о законах равновесия и движения жидкостей и о способах приложения этих законов к решению практических задач называют гидравликой. В гидравлике рассматривают, главным образом, потоки жидкости, ограниченные и направленные твердыми стенками, т. е. течение в закрытых и открытых каналах.Таким образом, можно сказать, что в гидравлике изучают в основном внутренние течения жидкостей и решают так называемую внутреннюю задачу в отличие от внешней, связанной с внешним обтеканием тел сплошной средой, которое имеет место при движении тела в жидкости или газе.
Историческое развитие механики жидкостей шло двумя различными путями:
-первый путь – теоретический, путь точного математического анализа, основанного на законах механики. Он привел к созданию теоретической гидромеханики, которая долгое время являлась самостоятельной дисциплиной, непосредственно не связанная с экспериментом. Однако на пути чистого теоретического исследования движения жидкости встречается множество трудностей, и методы теоретической гидромеханики не всегда дают ответы на вопросы, выдвигаемые практикой.
- второй путь – путь широкого применения эксперимента и накопления опытных данных для использования их в инженерной практике – привел к созданию гидравлики.
2.Понятие жидкости. Реальная и идеальная жидкости.
Жидкость – физическое тело, молекулы которого слабо связаны между собой. Поэтому незначительные силы способны легко изменить форму жидкости, которая способна сохранить объем, но не форму. В гидравлике жидкость рассматривают как непрерывную среду, заполняющую пространство без пустот и промежутков, т.е. отвлекаются от молекулярного строения жидкости и её частицы, даже бесконечно малые, считают состоящими из большого числа молекул.
Различают два вида жидкостей: жидкости капельные и жидкости газообразные. Капельные жидкости представляют собой жидкости в обычном, общепринятом понимании этого слова (вода, нефть, керосин, масло). Газообразные жидкости - газы, в обычных условиях представляют собой газообразные вещества (воздух, кислород, азот, пропан ). Капельные почти не сжимаются
В гидравлике рассматриваются реальная и идеальная жидкости. Идеальная жидкость в отличие от реальной жидкости не обладает внутренним трением, а также трением о стенки сосудов и трубопроводов, по которым она движется. Идеальная жидкость также обладает абсолютной несжимаемостью. Такая жидкость не существует в действительности, и была придумана для облегчения и упрощения ряда теоретических выводов и исследований.