Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
диплом 1.doc
Скачиваний:
32
Добавлен:
25.09.2019
Размер:
14.56 Mб
Скачать

5 Выбор дальнейшего направления совершенствования конструкций

Из прочностного расчета видно, что от заданного сочетания нагрузок напряжений в крыше не возникает. Следовательно, необходимо произвести дополнительный расчет крыши на прочность.

Чтобы выявить эффективность создания стеклопластиковой крыши, осуществим расчет на прочность и устойчивость для стальной и стеклопластиковой крыши и сравним полученные результаты.

Предел прочности (для металлов предел текучести) для стеклопластика принимаем

[σ]т = 1700 МПа.

Модуль упругости принимают равным 5,5·1010 при растяжении, 4,1·1010 при изгибе и поперечном растяжении, коэффициент Пуассона принимают равным 0,39.

6 Расчет модернизированной крыши на прочность и устойчивость. Анализ результатов

Предел текучести для стали Ст3СП ГОСТ 16523-97 при толщине листов до 10 мм принимается:

[σ]т = 255 МПа

Для первого расчетного режима при действие двух сил по 1 кН каждая, приложенных на площадке 0,25х0,25 м и приложенных на расстоянии 0,5 м друг от друга в любой части крыши допускаемые напряжения принимаются согласно «Нормам…» как при квазистатических нагрузках

[σ] = 0,95[σ]т=242,25 МПа

Для третьего расчетного режима, для всех элементов крыши допускаемые напряжения принимаются равными 155 МПа.

В соответствии с «Нормами…», для стали Ст3СП ГОСТ 16523-97 модуль упругости принимается равным 2,1·105 МПа, коэффициент Пуассона принимается равным 0,3.

6.1 Расчетная схема и принятые допущения

В соответствии с рекомендациями «Норм…» расчет производится методом конечных элементов, с использованием известного расчетного пакета ANSYS, версия 13.0.

Для расчета используется стержневая конечно-элементная модель.

Для описания подкрепляющих и несущих элементов конструкции крыши были использованы треузловые конечные элементы типа BEAM189. Для описания обшивки крыши были использованы элементы типа SHELL181.

Конечно-элементная модель включает 3895 конечных элементов и 9884 узлов.

Конечно-элементная модель показана на рисунке 36.

Рисунок 36 − Конечно элементная модель крыши

6.2 Расчет напряжений и оценка прочности.

Согласно «Нормам…» крыша рассчитывается на прочности и устойчивость при действие двух сил по 1 кН каждая, приложенных на площадке 0,25х0,25 м на расстоянии 0,5 м друг от друга в любой части крыши и дополнительно рассчитывается при третьем режиме (как наиболее опасном).

При расчете по третьему расчетному режиму принимается следующее сочетание нагрузок действующих на крышу:

− сила тяжести крыши;

− вертикальная динамическая сила, определяется умножением силы тяжести крыши на коэффициент вертикальной динамики, для кузова вагона.

Схема приложения нагрузок к крыше показана на рисунке 37.

Рисунок 37 – Схема приложения нагрузок при первом режиме

Рисунок 38 – Схема приложения нагрузок при третьем режиме

В результате расчета были получены напряженные состояния крыши от действия рассматриваемых сил.

Распределение эквивалентных напряжений по Мизесу показано на рисунках 39-40.

а)

б)

в)

г)

д)

е)

Рисунок 39 − Распределение эквивалентных напряжений при первом режиме

а), б), в) для металлической крыши; г), д), е) для стеклопластиковой крыши

а)

б)

в)

г)

Рисунок 40 − Распределение эквивалентных напряжений при третьем режиме

а), б) для металлической крыши; в), г) для стеклопластиковой крыши

Максимальные эквивалентные напряжения в крыши при действии двух сил по 1 кН каждая, приложенных на площадке 0,25х0,25 м на расстоянии 0,5 м не превышает допускаемые напряжения. Максимальные эквивалентные напряжения в крыши для третьего режима не превышают допускаемого напряжения. Также в каркасе крыши, выполненном из стали, так же возникают напряжения, в некоторых режимах они максимальные в конструкции, но они так же в пределах допустимого.

Для дальнейшего расчета устойчивости используются напряжения элементов крыши, рассчитываемые в автоматическом режиме в программном комплексе ANSYS версия 13.0.

6.3 Расчет устойчивости

Проверка устойчивости конструкций производится путем сравнения расчетного коэффициента запаса устойчивости n с допускаемым [n]:

, (18)

где − критическое напряжение сжатия, при котором конструкция теряет устойчивость;

− напряжения сжатия элемента, рассчитываемые в автоматическом режиме в программном комплексе ANSYS версия 13.0.

Программный комплекс ANSYS версия 13.0 в автоматическом режиме сравнивает критические напряжения с напряжениями сжатия.

В результате расчета были получены формы потери устойчивости и соответствующие им коэффициенты запаса устойчивости.

Форма потери устойчивости и соответствующий ей коэффициент запаса устойчивости при первом режиме представлены на рисунках 41-43.

а)

б)

Рисунок 41 − Первая форма потери устойчивости

а) для металла п= 44,05; б) для стеклопластика п= 875,53

а)

б)

Рисунок 42 − Вторая форма потери устойчивости

а) для металла п= 45,77; б) для стеклопластика п= 1054,91

а)

б)

Рисунок 43 − Третья форма потери устойчивости

а) для металла п = 50,17; б) для стеклопластика п = 1558,96

Формы потери устойчивости и соответствующие им коэффициенты запаса устойчивости при третьем режиме представлены на рисунках 44-46.

а)

б)

Рисунок 44 − Первая форма потери устойчивости:

а) для металла п = 150698; б) для стеклопластика п = 148353

а)

б)

Рисунок 45 − Вторая форма потери устойчивости

а) для металла п= 151226; б) для стеклопластика п= 148872

а)

б)

Рисунок 46 − Третья форма потери устойчивости

а) для металла п = 156060; б) для стеклопластика п = 153632

Полученные в результате расчета коэффициенты запаса устойчивости при первой и третьем режиме не менее чем допускаемое значение [n] =1,1.

Выводы сравнения результатов расчета металлической и стеклопластиковой крыши приведены таблице 10.

Таблица 10 – Сравнительная характеристика металлической и стеклопластиковой крыши

Показатель

Металлическая крыша

Стеклопластиковая крыша

1 Масса, кг

1800

350

2 Максимальное напряжение при I режиме, кПа

2180

322

3 Максимальное напряжение при III режиме, кПа

332

253

4 Минимальный коэффициент запаса устойчивости при I режиме

44,05

875,53

5 Минимальный коэффициент запаса устойчивости при III режиме

150698

148353

Видно, что стеклопластиковая крыша не уступает металлической, а по некоторым показателям даже превосходит (запас устойчивости у нее выше при первом режиме, при примерно равных механических свойствах – она легче).

Выигрыш в весе приводит к увеличению грузоподъемности вагона на 5 тонн. Что в свою очередь повышает экономическую эффективность вагона. Рассмотрим этот вопрос.