
- •Дипломный проект
- •Введение
- •1Обзор конструкций и выбор аналога и направления проектирования
- •1.1 Обзор вариантов исполнения крыш
- •1.2 Обзор способов облегчения крыши за счет конструкции и материала
- •1.3 Применение стеклопластиков в вагоностроении
- •2 Расчет нагрузок, действующих на кузов крытого вагона
- •2.1 Общие сведения
- •2.2 Расчет на прочность кузова крытого вагона
- •3 Расчетная схема вагона и принятые допущения
- •4 Расчет конструкции на прочность, анализ результатов
- •4.1 Расчет прочности при I режиме
- •4.2 Расчет прочности при III режиме
- •5 Выбор дальнейшего направления совершенствования конструкций
- •6 Расчет модернизированной крыши на прочность и устойчивость. Анализ результатов
- •6.1 Расчетная схема и принятые допущения
- •6.2 Расчет напряжений и оценка прочности.
- •7 Экономическая целесообразность создания крытого вагона со сдвижной крышей
- •7.1 Обоснование эффективности изготовления опытного образца модернизированного крытого вагона
- •7.2 Расчет экономической эффективности
- •8 Охрана труда при производстве и ремонте
- •8.1 Пожароустойчивость стеклопластика
- •8.2 Разработка требований безопасности при монтаже крыши
- •8.2.1 Требования к рабочему месту
- •8.2.2 Требования безопасности при работах с применением грузоподъемных механизмов и устройств
- •8.2.3 Требования к сиз от падения с высоты
- •8.2.4 Требования безопасности к оборудованию, механизмам, средствам малой механизации, ручному инструменту
- •8.2.5 Требования безопасности при сварочных высотных работах
- •8.3 Расчет и выбор вентиляции
- •9 Безопасность в чрезвычайных ситуациях. Дезактивация объекта, загрязненного радиоактивными веществами
- •9.1 Общие сведения о дезактивации железнодорожных сооружений и устройств
- •9.2 Оценка радиационной обстановки и определение элементов объектов, подлежащих дезактивации
- •9.3 Определение объемов, способов, сил и средств дезактивации
- •9.4 Выводы по бжчс
- •Приложение а
- •Приложение б
- •Список использованных источников
3 Расчетная схема вагона и принятые допущения
Расчет производился методом конечных элементов с использованием расчетного пакета "Ansys" версия 13.0. Для расчета использовалась балочная конечно-элементная модель кузова крытого вагона. Расчетная модель включает 59420 элементов и 66220 узлов.
Для описания каркаса использовались стержневые конечные элементы типа ВЕАМ189, для описания обшивки – пластинчатые конечные элементы типа SHELL181.
Вид конечно-элементной модели кузова крытого вагона показан на рисунке 11.
Рисунок 11 – Конечно-элементная модель кузова крытого вагона
В качестве кинематических граничных условий были приняты:
– ограничение вертикальных и поперечных перемещений в шкворневых узлах рамы, ограничение вращения вокруг продольной оси;
– ограничение продольных перемещений в плоскостях заднего и переднего упоров.
4 Расчет конструкции на прочность, анализ результатов
4.1 Расчет прочности при I режиме
4.1.1 Динамическая нагрузка (I режим удар)
Рисунок 12 − Кинематические и граничные условия
Рисунок 13 − Распределение эквивалентных напряжений в вагоне
а)
б)
Рисунок 14 – Распределение эквивалентных напряжений в боковой стене
а) общий вид; б) участок с максимальными напряжениями
Рисунок 15 − Распределение эквивалентных напряжений в торцевой стене вагона (закрепление)
4.1.2 Квазистатическая нагрузка (I режим сжатие)
Рисунок 16 − Кинематические и граничные условия модели
Рисунок 17 − Распределение эквивалентных напряжений в вагоне
4.1.3 Динамическая нагрузка (I режим рывок)
Рисунок 18 − Кинематические и граничные условия модели
Рисунок 19 − Распределение эквивалентных напряжений в торцевой стене (закрепление)
а)
б)
Рисунок 20 − Распределение эквивалентных напряжений в боковой стене
а) общий вид; б) участок с максимальными напряжениями
4.1.4 Квазистатическая нагрузка (I режим растяжение)
Рисунок 21 − Кинематические и граничные условия
Рисунок 22 − Распределение эквивалентных напряжений в вагоне
4.1.5 Выводы по I режиму
Максимальные напряжения возникают при динамическом силовом нагружении (удар-рывок) в зоне торцевой стены. Однако на практике данных напряжений не возникает, так как:
металл обшивки начинает работать на растяжение;
нагружается каркас конструкции.
В остальных узлах вагона рассчитанные напряжения не превышают допускаемого в 350 МПа.
Кроме того, из расчета видно, что напряжения в крыше от нагрузок расчетного режима – не возникают.
4.2 Расчет прочности при III режиме
4.2.1 Динамическая нагрузка (III режим, удар)
Рисунок 23 − Кинематические и граничные условия
Рисунок 24 − Распределение эквивалентных напряжений в вагоне
а)
б)
в)
Рисунок 25 − Распределение эквивалентных напряжений в боковой стене
а) общий вид; б), в) участки с максимальными напряжениями
Рисунок 26 – Распределение эквивалентных напряжений в торцевой стене вагона (закрепления)
4.2.2 Квазистатическая нагрузка (III режим, сжатие)
Рисунок 27 − Кинематические и граничные условия модели
Рисунок 28 − Распределение эквивалентных напряжений в вагоне
4.2.3 Динамическая нагрузка (III режим, рывок)
Рисунок 29 − Кинематические и граничные условия модели
Рисунок 30 − Распределение эквивалентных напряжений в вагоне
а)
б)
в)
Рисунок 31 − Распределение эквивалентных напряжений в боковой стене
а) общий вид; б), в) участки с максимальными напряжениями
Рисунок 32 − Распределение эквивалентных напряжений в торцевой стене вагона (закрепление)
а)
б)
в)
Рисунок 33 − Распределение эквивалентных напряжений по раме вагона и элементами обшивки
а) общий вид; б), в) участки с максимальными напряжениями
4.2.4 Квазистатическая нагрузка (III режим, растяжение)
Рисунок 34 − Кинематические и граничные условия модели
Рисунок 35 − Распределение эквивалентных напряжений в вагоне
4.2.5 Выводы по III режиму
Максимальные напряжения возникают при динамическом нагружении кузова (удар-рывок) в зоне боковой стены и между шкворневой и концевой балкой пола модели. Величина расчетного напряжения даже в наибольшем значении не превышает допустимого значения.
Так же следует отметить, что нагрузки третьего расчетного режима не оказывают никакого воздействия на крышу вагона.