
- •2. Модели в механике: материальная точка, система материальных точек, абсолютно твердое тело. Степени свободы движения.
- •Виды движения материальной точки и твердого тела.
- •Координатный, векторный и траекторный способ описания движения материальной точки.
- •Радиус-вектор, путь перемещения материальной точки
- •6. Средняя путевая и средняя скорость перемещения. Мгновенная линейная скорость.
- •Прямая и обратная связь мгновенной линейной скорости и радиуса-вектора материальной точки, модуля скорости и пройденного пути.
- •Линейное ускорение. Прямая и обратная связь линейного ускорения и мгновенной линейной скорости.
- •Ускорение при криволинейном движении материальной точки. Тангенциальное и нормальное ускорение.
- •Вектор углового перемещения и угловая скорость. Прямая и обратная связь угловой скорости и вектора углового перемещения.
- •11. Угловое ускорение. Прямая и обратная связь угловой скорости и вектора углового перемещения.
- •12. Связь линейных и угловых кинематических характеристик.
- •13. Инерциальные и неинерциальные системы отсчета. Принцип относительности преобразования Галилея.
- •14. Масса тела и ее свойства. Центр масс системы.
- •15. Импульс материальной точки, системы материальных точек и твердого тела.
- •16. Фундаментальные и нефундаментальные взаимодействия. Сила как мера взаимодействия тел. Свойства силы.
- •17. Первый закон Ньютона
- •18. Второй закон Ньютона
- •19. Третий закон Ньютона
- •20. Момент инерции материальной точки, системы материальных точек, твердого тела относительно оси.
- •21. Свойства момента инерции тела относительно оси. Теорема Штейнера.
- •22. Главные и свободные оси инерции тела. Главные моменты инерции. Устойчивые оси вращения.
- •23. Вычисление момента инерции тонкого однородного стержня относительно перпендикулярной оси.
- •24. Вычисление момента инерции бесконечно круглого кольца относительно оси, перпендикулярной плоскости кольца.
- •25. Вычисление момента инерции однородного сплошного цилиндра (диска) относительно продольной геометрической оси.
- •26. Центральный момент импульса материальной точки, системы материальных точек, твердого тела.
- •27 Момент импульса тела относительно оси. Осевой момент импульса твердого тела при простом вращательном движении.
- •28. Момент силы относительно точки и оси.
- •29. Основной закон динамики вращательного движения.
- •30. Виды деформации твердого тела. Упругие силы. Закон Гука при деформациях растяжения (сжатия) и сдвига.
- •31. Силы внешнего трения: покоя, скольжения и качения. Сила трения покоя
- •32. Сила внутреннего тела. Ламинарное и турбулентное течение вязкой среды. Закон Стокса.
- •33. Сила тяготения, сила тяжести и вес тела. Закон всемирного тяготения.
- •34. Работа и мощность силы в поступательном и вращательном движении.
- •35. Кинетическая энергия материальной точки, системы материальных точек, твердого тела при поступательном движении.
- •36. Кинетическая энергия простого вращательного и плоского движения твердого тела.
- •37. Теорема о кинетической энергии.
- •38. Консервативные и неконсервативные силы. Понятие потенциальной энергии.
- •43. Закон сохранения момента импульса для замкнутых систем.
- •44. Закон сохранения полной механической энергии.
- •45. Закон сохранения импульса и момента импульса для незамкнутых систем.
- •46. Закон сохранения при абсолютно неупругом ударе.
- •47. Законы сохранения при абсолютно упругом ударе.
- •48. Постулаты специальной теории относительности. Преобразование Лоренца.
17. Первый закон Ньютона
Первый закон Ньютона постулирует наличие такого явления, как инерция тел. Поэтому он также известен как Закон инерции. Инерция — это явление сохранения телом скорости движения (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения, на тело необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают инертностью. Инертность — это свойство тел сопротивляться изменению их текущего состояния. Величина инертности характеризуется массой тела.
Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго.
Системы отсчета, в которых выполняется первый закон Ньютона, называют инерциальными.
Или
Инерциальные системы отсчета – это системы, относительно которых материальная точка при отсутствии на нее внешних воздействий или их взаимной компенсации покоится или движется равномерно и прямолинейно.
18. Второй закон Ньютона
Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчёта (ИСО).
Современная формулировка
-
В инерциальной системе отсчёта ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.
При подходящем выборе единиц измерения, этот закон можно записать в виде формулы:
где
—
ускорение
материальной точки;
—
сила,
приложенная к материальной точке;
—
масса
материальной точки.
Или в более известном виде:
В случае, когда масса материальной точки меняется со временем, второй закон Ньютона формулируется с использованием понятия импульс:
-
В инерциальной системе отсчета скорость изменения импульса материальной точки равна равнодействующей всех приложенных к ней сил.
где
—
импульс
точки,
где
—
скорость
точки;
—
время;
—
производная
импульса по времени.
Когда на тело действуют несколько сил, с учётом принципа суперпозиции второй закон Ньютона записывается:
или
Второй закон Ньютона действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта. Для скоростей, приближенных к скорости света, используются законы теории относительности.
Нельзя
рассматривать частный случай (при
)
второго закона как эквивалент первого,
так как первый закон постулирует
существование ИСО, а второй формулируется
уже в ИСО.
19. Третий закон Ньютона
Этот
закон объясняет, что происходит с двумя
взаимодействующими телами. Возьмём для
примера замкнутую систему, состоящую
из двух тел. Первое тело может действовать
на второе с некоторой силой
,
а второе — на первое с силой
.
Как соотносятся силы? Третий закон
Ньютона утверждает: сила действия равна
по модулю и противоположна по направлению
силе противодействия. Подчеркнём, что
эти силы приложены к разным телам, а
потому вовсе не компенсируются.
Современная формулировка
-
Материальные точки попарно действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:
Закон отражает принцип парного взаимодействия. То есть все силы в природе рождаются парами.