
- •2. Модели в механике: материальная точка, система материальных точек, абсолютно твердое тело. Степени свободы движения.
- •Виды движения материальной точки и твердого тела.
- •Координатный, векторный и траекторный способ описания движения материальной точки.
- •Радиус-вектор, путь перемещения материальной точки
- •6. Средняя путевая и средняя скорость перемещения. Мгновенная линейная скорость.
- •Прямая и обратная связь мгновенной линейной скорости и радиуса-вектора материальной точки, модуля скорости и пройденного пути.
- •Линейное ускорение. Прямая и обратная связь линейного ускорения и мгновенной линейной скорости.
- •Ускорение при криволинейном движении материальной точки. Тангенциальное и нормальное ускорение.
- •Вектор углового перемещения и угловая скорость. Прямая и обратная связь угловой скорости и вектора углового перемещения.
- •11. Угловое ускорение. Прямая и обратная связь угловой скорости и вектора углового перемещения.
- •12. Связь линейных и угловых кинематических характеристик.
- •13. Инерциальные и неинерциальные системы отсчета. Принцип относительности преобразования Галилея.
- •14. Масса тела и ее свойства. Центр масс системы.
- •15. Импульс материальной точки, системы материальных точек и твердого тела.
- •16. Фундаментальные и нефундаментальные взаимодействия. Сила как мера взаимодействия тел. Свойства силы.
- •17. Первый закон Ньютона
- •18. Второй закон Ньютона
- •19. Третий закон Ньютона
- •20. Момент инерции материальной точки, системы материальных точек, твердого тела относительно оси.
- •21. Свойства момента инерции тела относительно оси. Теорема Штейнера.
- •22. Главные и свободные оси инерции тела. Главные моменты инерции. Устойчивые оси вращения.
- •23. Вычисление момента инерции тонкого однородного стержня относительно перпендикулярной оси.
- •24. Вычисление момента инерции бесконечно круглого кольца относительно оси, перпендикулярной плоскости кольца.
- •25. Вычисление момента инерции однородного сплошного цилиндра (диска) относительно продольной геометрической оси.
- •26. Центральный момент импульса материальной точки, системы материальных точек, твердого тела.
- •27 Момент импульса тела относительно оси. Осевой момент импульса твердого тела при простом вращательном движении.
- •28. Момент силы относительно точки и оси.
- •29. Основной закон динамики вращательного движения.
- •30. Виды деформации твердого тела. Упругие силы. Закон Гука при деформациях растяжения (сжатия) и сдвига.
- •31. Силы внешнего трения: покоя, скольжения и качения. Сила трения покоя
- •32. Сила внутреннего тела. Ламинарное и турбулентное течение вязкой среды. Закон Стокса.
- •33. Сила тяготения, сила тяжести и вес тела. Закон всемирного тяготения.
- •34. Работа и мощность силы в поступательном и вращательном движении.
- •35. Кинетическая энергия материальной точки, системы материальных точек, твердого тела при поступательном движении.
- •36. Кинетическая энергия простого вращательного и плоского движения твердого тела.
- •37. Теорема о кинетической энергии.
- •38. Консервативные и неконсервативные силы. Понятие потенциальной энергии.
- •43. Закон сохранения момента импульса для замкнутых систем.
- •44. Закон сохранения полной механической энергии.
- •45. Закон сохранения импульса и момента импульса для незамкнутых систем.
- •46. Закон сохранения при абсолютно неупругом ударе.
- •47. Законы сохранения при абсолютно упругом ударе.
- •48. Постулаты специальной теории относительности. Преобразование Лоренца.
47. Законы сохранения при абсолютно упругом ударе.
Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел. Во многих случаях столкновения атомов, молекул и элементарных частиц подчиняются законам абсолютно упругого удара. При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии. Простым примером абсолютно упругого столкновения может быть центральный удар двух бильярдных шаров, один из которых до столкновения находился в состоянии покоя (рис. 1.21.2). Центральным ударом шаров называют соударение, при котором скорости шаров до и после удара направлены по линии центров.
|
Рисунок 1.21.2. Абсолютно упругий центральный удар шаров. |
В общем случае массы m1 и m2 соударяющихся шаров могут быть неодинаковыми. По закону сохранения механической энергии
|
Здесь υ1 – скорость первого шара до столкновения, скорость второго шара υ2 = 0, u1 и u2 – скорости шаров после столкновения. Закон сохранения импульса для проекций скоростей на координатную ось, направленную по скорости движения первого шара до удара, записывается в виде:
m1υ1 = m1u1 + m2u2. |
Мы получили систему из двух уравнений. Эту систему можно решить и найти неизвестные скорости u1 и u2 шаров после столкновения:
|
В частном случае, когда оба шара имеют одинаковые массы (m1 = m2), первый шар после соударения останавливается (u1 = 0), а второй движется со скоростью u2 = υ1, то есть шары обмениваются скоростями (и, следовательно, импульсами). Если бы до соударения второй шар также имел ненулевую скорость (υ2 ≠ 0), то эту задачу можно было бы легко свести к предыдущей с помощью перехода в новую систему отсчета, которая движется равномерно и прямолинейно со скоростью υ2 относительно «неподвижной» системы. В этой системе второй шар до соударения покоится, а первый по закону сложения скоростей имеет скорость υ1' = υ1 – υ2. Определив по приведенным выше формулам скорости u1 и u2 шаров после соударения в новой системе, нужно сделать обратный переход к «неподвижной» системе. Таким образом, пользуясь законами сохранения механической энергии и импульса, можно определить скорости шаров после столкновения, если известны их скорости до столкновения. Центральный (лобовой) удар очень редко реализуется на практике, особенно если речь идет о столкновениях атомов или молекул.
48. Постулаты специальной теории относительности. Преобразование Лоренца.
В основе специальной теории относительности лежат два принципа или постулата.
- Принцип относительности: все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой. Это означает, что во всех инерциальных системах физические законы (не только механические) имеют одинаковую форму. Таким образом, принцип относительности классической механики обобщается на все процессы природы, в том числе и на электромагнитные. Этот обобщенный принцип называют принципом относительности Эйнштейна.
- Принцип постоянства скорости света: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета. Скорость света в специальной теории относительности занимает особое положение. Это предельная скорость передачи взаимодействий и сигналов из одной точки пространства в другую.
49. Длина стержня в разных инерциальных системах отсчета (лоренцево сокращение).
50. Промежуток времени между двумя событиями в разных инерциальных системах отсчета (замедление хода движущихся часов).
51. Закон сложения скоростей в специальной теории относительности.
52. Основные положения релятивистской динамики: релятивистская масса, импульс, полная энергия, энергия покоя, кинетическая энергия.