
- •1 Технологический процесс и краткая характеристика его основных стадий (переделов).
- •3 Классификация основных процессов в технологии производства строительных материалов и изделий.
- •6 Классификация процессов в зависимости от изменения параметров (скорости, давления, концентрации и др.) процесса во времени.
- •7 Материальный баланс и его назначение.
- •8 Тепловой баланс и его назначение.
- •9 Интенсивность процессов и аппаратов, определение необходимой рабочей поверхности или рабочего объема непрерывно действующего аппарата.
- •10 Определение рабочего объема периодически действующего аппарата.
- •11 Кинетические закономерности процессов.
- •12 Основы системного анализа и понятие модели; схема управляемой модели.
- •13 Классификация моделей по в.А.Вознесенскому.
- •14 Подобные явления. Константы и инварианты подобия, индикаторы подобия, симплексы (параметрические критерии), критерии подобия (определяющие и неопределяющие).
- •15 Теоремы подобия. Критериальные уравнения.
- •16 Силовые воздействия при измельчении материалов в машинах
- •17 Виды процесса измельчения материалов в зависимости от конечной крупности
- •18 Характеристики исходного и готового продукта: категории прочности и хрупкости горных пород.
- •19 Степень дробления
- •20 Основные энергетические гипотезы дробления.
- •21 Схемы циклов измельчения.
- •22 Кинетика измельчения и размолоспособность.
- •23 Строение строительных материалов.
- •24 Микро- и макроструктура строительного материала.
- •25 Фазовый состав неорганического материала.
- •26 Кристаллические и аморфные тела, виды химической связи.
- •27 Твердость и прочность, как два различных фактора, характеризующих механические свойства материалов.
- •28 Дефекты реальных композиционных материалов: дефекты в кристаллах (точечные, одномерные и двумерные).
- •29 Теория Гриффитса разрушения твердых тел.
- •30 Теоретическая прочность твердых тел (формула Орована-Келли); критическое напряжение по Гриффитсу.
- •31 Эффект адсорбционного понижения прочностиП.А.Ребиндера.
- •32 Особенности порошков тонкого помола.
- •33 Грохочение. Основные схемы рассева, их достоинства и недостатки.
- •3. Комбинированная схема
- •34 Определение оптимальных скоростей грохотов.
- •35 Характеристики крупности материалов (частные, суммарные и кривые распределения).
- •36 Способы расчета среднего диаметра фракции.
- •37 Виды грохочения, схемы механических грохотов.
- •38 Оценка процесса грохочения (производительность и эффективность грохочения).
- •39 Гранулометрический состав материалов. Непрерывные и прерывистые укладки. Оптимальное соотношение фракций при непрерывной укладке (формула Андерсена).
- •40 Эффективность аппарата и интенсивность его действий.
- •41 Количественная оценка качества перемешивания.
- •42 Классификация смесительных машин.
- •43 Принципиальные схемы устройств для смешивания порошковых материалов.
- •44 Качественные выводы на основе накопленного опыта по смешиванию материалов.
- •45 Коагуляционно-тиксотропные и конденсационно-кристаллизационные структуры.
- •46 Вибрирование. Параметры вибрации и их совокупности, определяющие качество уплотнения. Схемы виброплощадок.
- •47 Разновидности вибрационных методов формования.
- •49 Формование с прессованием бетонной смеси. Разновидности формования с прессованием (полусухое прессование и пластическое формование).
- •50 Общие положения. Вязкость жидкостей динамическая и кинематическая.
- •51 Гидродинамика. Основные определения (живое сечение потока, объемный и массовый расходы и массовая скорость жидкости).
- •52 Безнапорные и напорные потоки. Гидравлический радиус, гидравлический (эквивалентный) диаметр (случаи использования, пример для кольцевого сечения).
- •53 Ламинарный режим обтекания твердого тела жидкостью. Решение (закон)Стокса для силы давления потока.
- •54 Турбулентный режим обтекания твердого тела жидкостью. Формула Ньютона для определения полного сопротивления.
- •55 Осаждение частиц под действием силы тяжести. Скорость витания частицы.
- •56 Движение жидкости через неподвижные и подвижные зернистые и пористые слои.
- •57 Определение сопротивления слоя (потери давления).
- •58 Гидродинамика кипящего (псевдоожиженного)слоя. Скорость и число псевдоожижения. Поршневое псевдоожижение, фонтанирование. Сопротивление кипящего слоя.
- •59 Пленочное течение жидкости. Линейная плотность орошения. Принцип работы центробежного скруббера.
- •60 Барботаж. Случаи использования барботажа в промышленности строительных материалов. Пузырьковый и струйный виды работы аппарата. Определение давления и расхода воздуха.
- •61 Пневмотранспорт. Принципиальная схема пневмотранспорта цемента на заводахЖби.
- •62 Гидротранспорт. Порционный и непрерывный способы подачи бетонной смеси.
- •63 Гидравлическая классификация и воздушная сепарация. Назначение.
- •64 Принципиальные схемы вертикальных и гидромеханических (спиральных) классификаторов.
- •65 Принцип работы проходного, циркуляционного сепараторов и циклона.
- •66 Течение неньютоновских жидкостей. Их классификация.
- •67 Характеристики бингамовских, псевдопластичных и дилатантных жидкостей.
- •68 Характеристики тиксотропных, реопектических имаксвелловских жидкостей.
- •69 Механические модели бингамовской и максвелловской жидкостей.(паливо)
- •70 Основы теплопередачи. Теплопроводность, конвекция, тепловое излучение.
- •Конвекция – процесс распространения теплоты перемещением частиц. Плотность теплового потока, передаваемого конвекцией, описывается уравнением Ньютона-Рихмана
- •71 Сложный теплообмен.
- •72 Совместный перенос тепла конвекцией и излучением.
- •73 Теплообмен при фазовых переходах.
- •74 Внешний и внутренний теплообмен.
- •75 Движущая сила тепловых процессов.
- •76 Теплообменные аппараты
- •77 Классификация теплообменных аппаратов.
- •78 Интенсификация тепловых процессов.
- •79 Равновесие при массопередаче. Движущая сила процесса.
- •80 Материальный баланс массопередачи и уравнение рабочей линии процесса.
- •81 К выводу уравнения линии рабочих концентраций.
- •82 Равновесие между фазами.
- •83 Материальный баланс процессов массообмена.
- •84 Влажное состояние материала, подвергаемого тепловой обработке. Виды влажных материалов.
- •85 Формы связи влаги с материалом: энергетическая классификация.
- •86 Способы удаления влаги и виды сушки.
- •87 Статика и кинетика сушки. Их назначение.
- •88 Статика сушки. Материальный и тепловой баланс сушки.
- •89 Кинетика сушки. Вид кривых влажности, температуры и скорости сушки, характеризующих процесс сушки на модели процесса для высоковлажного материала.
72 Совместный перенос тепла конвекцией и излучением.
Рассмотрим пример высокотемпературного теплового процесса, при котором теплота передается одновременно конвекцией и излучением. Требуется определить количество передаваемого тепла от стенки поверхностью F, нагретой до абсолютной температуры Тст (соответственно в 0С – tст), к среде с абсолютной температурой Т (t в 0С).
Тепло, передаваемое за счёт конвекции
.
Тепло, передаваемое излучением (лучеиспусканием)
.
Общее количество тепла
,
или
,
где αл – коэффициент теплоотдачи при лучеиспускании, Вт/(м2∙К).
Таким образом,
,
где α – общий (эффективный) коэффициент теплоотдачи (при совместном переносе тепла конвекцией и лучеиспусканием).
Имеются приближённые формулы для определения общего коэффициента теплоотдачи аппарата, установленного в помещении:
α = 9,74 + 0,07·Δt, Вт/(м2·К);
α = 9,3 + 0,058·tст, Вт/(м2·К).
73 Теплообмен при фазовых переходах.
Теплоотдача при конденсации паров:
1)Конденсация чистого пара: аналетическое решение задачи о теплоотдачи при плёночной конденсации чистого пара было выполнено Нуссельтом. По схеме Нуссельта на поверхности твёрдого тела воспринимающую теплоту от пара происход. плёночная конденсация при отсустви капельной. Анализ этого процесса на основе теории подобия даёт возможность установить следующую критериальную зависимость.
Nu=f(Pr, K, Ga)
Ga=g*l3/
2
Nu=0.943(Pr*K*Ga)0.25
Это уравнение справедливо при медленном движении пара и ламинарномтечении конденс. плёнки по вертикальной стенке. При турбулентной плёнки конденсата.
Nu=1.13(Pr*K*Ar)0.25
Ar= g*l3/ 2*(1-ρн/ ρк)
При конденсации пара на горизонтальной стене, получим:
Nu=0,72(Pr*K*Ga)0.25
Nu=c(Ga*Pr)0.25
2)теплоотдача при конденсации пара из паровоз. смеси. Такие смеси образуются в автоклавах. Содержание воздуха в смеси достигает 10-15%.
Установлено что присутствие воздуха в автоклаве уменьшает прочность бетона на 20%. Поэтому рекомендуется перед запариванием продуть автоклав паром. Содержание 1% воздуха уменьшает α на 60%. А содержание 3% на 80%. При конденсации паров содержащих инертне газы возникает дополнительная термическое сопротивление оказыв. Инертными газами, скапливаются у поверхности плёнки.
74 Внешний и внутренний теплообмен.
Внешний теплообмен – теплообмен между окружающей средой и нагревания или охлаждения материала.
Внутренний теплообмен – теплообмен между центральной зоной материала и её поверхностью.
При внешнем теплообмене возможны 2 случая:
1)Теплообмен непосредственно между теплоносителем и поверхностью материала.
2)Теплообмен между теплоносителем и материалом через плёнку конденсации на его поверхности.
Внешний теплообмен между теплоносителем и материалом происходит конвекцией, излучением.
q=α*(tт-tп.м.)
α – коэффициент теплоотдачи, tт – средняя температура теплоносителя
tп.м. – средняя температура поверхности материала
При отсуствии эндотермических реакций q будет израсходовано на нагрев материала и влаги находящегося в материале и на её испарение с поверхностью материала. Тогда балансовое уравнение при первом случаии внешнего теплообмена:
q=α*(tт-tп.м.)=r*ρ0*Ru*du/d +c* ρ0*Vm*dt/ d
r – теплота испарения,ρ0 – плотность сухого материала, Ru – отношение объёма сухого материала к его поверхности с которой происходит испарение
du/d - скорость испарения, dt/ d - скорость нагрева
При отсуствии влаги уравнение примет вид второго слагаемого.
Второй случай: если температура поверхности материала меньше температуры окружающей среды и меньше точки росы то на ней может конденсироваться влага. Наличие плёнки конденсата усложняя процесс теплообмена. При хорошо смачиваемой поверхности будет сплошная конденсация. При плохой капельная конденсация. Вместе с паром и поверхность конденсации поступает воздух, понижающий парциальное давление пара. Парциальное давление смеси будет складываться из суммы парциальных давлений сухого воздуха и пара.
Pсм=Pп'+Pв'=Pп''+Pв''
Pп' и Pп'' – парциальное давление пара соответственно в окружающей среде и у поверхности материала, Pв' и Pв'' – сухого воздуха
Поток теплоты от паровозд. смеси определяется уравнение Ньютона.
qт.с.м.=αсм*(tсм-tж)
При внутреннем теплообмене исходя из того, что поверхность нагреваемого тела получает теплоту в количестве опред. формулами Фурье или Ньютона которая и распространяется и внутри материала.
Процесс распространения теплоты в теле в общем случаи складывается из потока теплоты распространённого за счёт теплопроводности материалов и за счёт потока движущего нутри материала массы влаги. Последний определяется произведеним массы движущей влаги на её теплосодержание. Таким образом для внутреннего теплопереноса можно записать
q=- λ*dt/dx+i’*qm