- •1 Технологический процесс и краткая характеристика его основных стадий (переделов).
- •3 Классификация основных процессов в технологии производства строительных материалов и изделий.
- •6 Классификация процессов в зависимости от изменения параметров (скорости, давления, концентрации и др.) процесса во времени.
- •7 Материальный баланс и его назначение.
- •8 Тепловой баланс и его назначение.
- •9 Интенсивность процессов и аппаратов, определение необходимой рабочей поверхности или рабочего объема непрерывно действующего аппарата.
- •10 Определение рабочего объема периодически действующего аппарата.
- •11 Кинетические закономерности процессов.
- •12 Основы системного анализа и понятие модели; схема управляемой модели.
- •13 Классификация моделей по в.А.Вознесенскому.
- •14 Подобные явления. Константы и инварианты подобия, индикаторы подобия, симплексы (параметрические критерии), критерии подобия (определяющие и неопределяющие).
- •15 Теоремы подобия. Критериальные уравнения.
- •16 Силовые воздействия при измельчении материалов в машинах
- •17 Виды процесса измельчения материалов в зависимости от конечной крупности
- •18 Характеристики исходного и готового продукта: категории прочности и хрупкости горных пород.
- •19 Степень дробления
- •20 Основные энергетические гипотезы дробления.
- •21 Схемы циклов измельчения.
- •22 Кинетика измельчения и размолоспособность.
- •23 Строение строительных материалов.
- •24 Микро- и макроструктура строительного материала.
- •25 Фазовый состав неорганического материала.
- •26 Кристаллические и аморфные тела, виды химической связи.
- •27 Твердость и прочность, как два различных фактора, характеризующих механические свойства материалов.
- •28 Дефекты реальных композиционных материалов: дефекты в кристаллах (точечные, одномерные и двумерные).
- •29 Теория Гриффитса разрушения твердых тел.
- •30 Теоретическая прочность твердых тел (формула Орована-Келли); критическое напряжение по Гриффитсу.
- •31 Эффект адсорбционного понижения прочностиП.А.Ребиндера.
- •32 Особенности порошков тонкого помола.
- •33 Грохочение. Основные схемы рассева, их достоинства и недостатки.
- •3. Комбинированная схема
- •34 Определение оптимальных скоростей грохотов.
- •35 Характеристики крупности материалов (частные, суммарные и кривые распределения).
- •36 Способы расчета среднего диаметра фракции.
- •37 Виды грохочения, схемы механических грохотов.
- •38 Оценка процесса грохочения (производительность и эффективность грохочения).
- •39 Гранулометрический состав материалов. Непрерывные и прерывистые укладки. Оптимальное соотношение фракций при непрерывной укладке (формула Андерсена).
- •40 Эффективность аппарата и интенсивность его действий.
- •41 Количественная оценка качества перемешивания.
- •42 Классификация смесительных машин.
- •43 Принципиальные схемы устройств для смешивания порошковых материалов.
- •44 Качественные выводы на основе накопленного опыта по смешиванию материалов.
- •45 Коагуляционно-тиксотропные и конденсационно-кристаллизационные структуры.
- •46 Вибрирование. Параметры вибрации и их совокупности, определяющие качество уплотнения. Схемы виброплощадок.
- •47 Разновидности вибрационных методов формования.
- •49 Формование с прессованием бетонной смеси. Разновидности формования с прессованием (полусухое прессование и пластическое формование).
- •50 Общие положения. Вязкость жидкостей динамическая и кинематическая.
- •51 Гидродинамика. Основные определения (живое сечение потока, объемный и массовый расходы и массовая скорость жидкости).
- •52 Безнапорные и напорные потоки. Гидравлический радиус, гидравлический (эквивалентный) диаметр (случаи использования, пример для кольцевого сечения).
- •53 Ламинарный режим обтекания твердого тела жидкостью. Решение (закон)Стокса для силы давления потока.
- •54 Турбулентный режим обтекания твердого тела жидкостью. Формула Ньютона для определения полного сопротивления.
- •55 Осаждение частиц под действием силы тяжести. Скорость витания частицы.
- •56 Движение жидкости через неподвижные и подвижные зернистые и пористые слои.
- •57 Определение сопротивления слоя (потери давления).
- •58 Гидродинамика кипящего (псевдоожиженного)слоя. Скорость и число псевдоожижения. Поршневое псевдоожижение, фонтанирование. Сопротивление кипящего слоя.
- •59 Пленочное течение жидкости. Линейная плотность орошения. Принцип работы центробежного скруббера.
- •60 Барботаж. Случаи использования барботажа в промышленности строительных материалов. Пузырьковый и струйный виды работы аппарата. Определение давления и расхода воздуха.
- •61 Пневмотранспорт. Принципиальная схема пневмотранспорта цемента на заводахЖби.
- •62 Гидротранспорт. Порционный и непрерывный способы подачи бетонной смеси.
- •63 Гидравлическая классификация и воздушная сепарация. Назначение.
- •64 Принципиальные схемы вертикальных и гидромеханических (спиральных) классификаторов.
- •65 Принцип работы проходного, циркуляционного сепараторов и циклона.
- •66 Течение неньютоновских жидкостей. Их классификация.
- •67 Характеристики бингамовских, псевдопластичных и дилатантных жидкостей.
- •68 Характеристики тиксотропных, реопектических имаксвелловских жидкостей.
- •69 Механические модели бингамовской и максвелловской жидкостей.(паливо)
- •70 Основы теплопередачи. Теплопроводность, конвекция, тепловое излучение.
- •Конвекция – процесс распространения теплоты перемещением частиц. Плотность теплового потока, передаваемого конвекцией, описывается уравнением Ньютона-Рихмана
- •71 Сложный теплообмен.
- •72 Совместный перенос тепла конвекцией и излучением.
- •73 Теплообмен при фазовых переходах.
- •74 Внешний и внутренний теплообмен.
- •75 Движущая сила тепловых процессов.
- •76 Теплообменные аппараты
- •77 Классификация теплообменных аппаратов.
- •78 Интенсификация тепловых процессов.
- •79 Равновесие при массопередаче. Движущая сила процесса.
- •80 Материальный баланс массопередачи и уравнение рабочей линии процесса.
- •81 К выводу уравнения линии рабочих концентраций.
- •82 Равновесие между фазами.
- •83 Материальный баланс процессов массообмена.
- •84 Влажное состояние материала, подвергаемого тепловой обработке. Виды влажных материалов.
- •85 Формы связи влаги с материалом: энергетическая классификация.
- •86 Способы удаления влаги и виды сушки.
- •87 Статика и кинетика сушки. Их назначение.
- •88 Статика сушки. Материальный и тепловой баланс сушки.
- •89 Кинетика сушки. Вид кривых влажности, температуры и скорости сушки, характеризующих процесс сушки на модели процесса для высоковлажного материала.
66 Течение неньютоновских жидкостей. Их классификация.
Жидкости, которые подчиняются закону внутреннего трения Ньютона:
,
где – напряжение сдвига; μ – динамический коэффициент вязкости (динамическая вязкость); dv/dy – градиент скорости, называются ньютоновскими.
В технологии строительных материалов к таким жидкостям относятся цементные шламы и растворы, бетонная смесь, глиняные шликеры и пасты, растворы полимеров, краски и т.п. Графики, выражающие зависимость изменения предельного напряжения сдвига τ от градиента скорости dv/dy, носят название кривых течения. В современной теории неньютоновские жидкости подразделяют на три класса
К первому классу относятся вязкие или стационарные неньютоновские жидкости.
Ко второму классу относятся неньютоновские жидкости, характеристики которых зависят от времени (нестационарные жидкости). Для этих структур кажущаяся вязкость определяется не только градиентом скорости сдвига, но и его продолжительностью.
К третьему классу относятся вязкоупругие или максвелловские жидкости. Жидкости текут под действием напряжений сдвига, но после снятия напряжений частично восстанавливают свою форму.
67 Характеристики бингамовских, псевдопластичных и дилатантных жидкостей.
Течение бингамовских жидкостей начинается только после того, как касательные напряжения в них достигнут некоторого предельного значения (так называемого начального напряжения сдвига 0). При меньших касательных напряжениях (<0) эти жидкости не текут, а испытывают только упругие деформации, как твердые тела (рис. 4.9, кривые течения 2 и 3).
Считается, что структура тела Бингама под действием предельного напряжения сдвига мгновенно и полностью разрушается, в результате чего тело Бингама превращается в жидкость. При снятии напряжения структура восстанавливается, и тело возвращается к твердому состоянию.
В бингамовских жидкостях касательное напряжение определяется по формуле Шведова-Бингама:
, (4.33)
где 0 – начальное (предельное) напряжение сдвига (для ньютоновских жидкостей 0 = 0); μпл – пластическая вязкость постоянна и аналогична вязкости ньютоновской жидкости
1 – ньютоновская жидкость; 2 – бингамовская неструктурированная жидкость;
3 – бингамовская структурированная жидкость
Псевдопластичные жидкости (рис. 4.10), как и ньютоновские, начинают течь уже при самых малых значениях τ, т.е. у них нет предела текучести.
Значение вязкости таких жидкостей в каждой конкретной точке зависит от градиента скорости. Поэтому течение таких жидкостей характеризуют кажущейся вязкостью, которая представляет собой отношение напряжений сдвига к градиенту скорости. С увеличением скорости сдвига кажущаяся вязкость этих жидкостей уменьшается.
Рисунок 4.10 – Кривые течения псевдопластичных (1) и дилатантных (2) жидкостей
К дилатантным жидкостям относятся суспензии крахмала, различные клеи с большим содержанием твердой фазы. В отличие от псевдопластичных, эти жидкости характеризуются возрастанием кажущейся вязкости с увеличением градиента скорости. Течение их может быть описано также уравнением Оствальда при m > 1.
Рисунок 4.10 – Кривые течения псевдопластичных (1) и дилатантных (2) жидкостей