
- •1 Технологический процесс и краткая характеристика его основных стадий (переделов).
- •3 Классификация основных процессов в технологии производства строительных материалов и изделий.
- •6 Классификация процессов в зависимости от изменения параметров (скорости, давления, концентрации и др.) процесса во времени.
- •7 Материальный баланс и его назначение.
- •8 Тепловой баланс и его назначение.
- •9 Интенсивность процессов и аппаратов, определение необходимой рабочей поверхности или рабочего объема непрерывно действующего аппарата.
- •10 Определение рабочего объема периодически действующего аппарата.
- •11 Кинетические закономерности процессов.
- •12 Основы системного анализа и понятие модели; схема управляемой модели.
- •13 Классификация моделей по в.А.Вознесенскому.
- •14 Подобные явления. Константы и инварианты подобия, индикаторы подобия, симплексы (параметрические критерии), критерии подобия (определяющие и неопределяющие).
- •15 Теоремы подобия. Критериальные уравнения.
- •16 Силовые воздействия при измельчении материалов в машинах
- •17 Виды процесса измельчения материалов в зависимости от конечной крупности
- •18 Характеристики исходного и готового продукта: категории прочности и хрупкости горных пород.
- •19 Степень дробления
- •20 Основные энергетические гипотезы дробления.
- •21 Схемы циклов измельчения.
- •22 Кинетика измельчения и размолоспособность.
- •23 Строение строительных материалов.
- •24 Микро- и макроструктура строительного материала.
- •25 Фазовый состав неорганического материала.
- •26 Кристаллические и аморфные тела, виды химической связи.
- •27 Твердость и прочность, как два различных фактора, характеризующих механические свойства материалов.
- •28 Дефекты реальных композиционных материалов: дефекты в кристаллах (точечные, одномерные и двумерные).
- •29 Теория Гриффитса разрушения твердых тел.
- •30 Теоретическая прочность твердых тел (формула Орована-Келли); критическое напряжение по Гриффитсу.
- •31 Эффект адсорбционного понижения прочностиП.А.Ребиндера.
- •32 Особенности порошков тонкого помола.
- •33 Грохочение. Основные схемы рассева, их достоинства и недостатки.
- •3. Комбинированная схема
- •34 Определение оптимальных скоростей грохотов.
- •35 Характеристики крупности материалов (частные, суммарные и кривые распределения).
- •36 Способы расчета среднего диаметра фракции.
- •37 Виды грохочения, схемы механических грохотов.
- •38 Оценка процесса грохочения (производительность и эффективность грохочения).
- •39 Гранулометрический состав материалов. Непрерывные и прерывистые укладки. Оптимальное соотношение фракций при непрерывной укладке (формула Андерсена).
- •40 Эффективность аппарата и интенсивность его действий.
- •41 Количественная оценка качества перемешивания.
- •42 Классификация смесительных машин.
- •43 Принципиальные схемы устройств для смешивания порошковых материалов.
- •44 Качественные выводы на основе накопленного опыта по смешиванию материалов.
- •45 Коагуляционно-тиксотропные и конденсационно-кристаллизационные структуры.
- •46 Вибрирование. Параметры вибрации и их совокупности, определяющие качество уплотнения. Схемы виброплощадок.
- •47 Разновидности вибрационных методов формования.
- •49 Формование с прессованием бетонной смеси. Разновидности формования с прессованием (полусухое прессование и пластическое формование).
- •50 Общие положения. Вязкость жидкостей динамическая и кинематическая.
- •51 Гидродинамика. Основные определения (живое сечение потока, объемный и массовый расходы и массовая скорость жидкости).
- •52 Безнапорные и напорные потоки. Гидравлический радиус, гидравлический (эквивалентный) диаметр (случаи использования, пример для кольцевого сечения).
- •53 Ламинарный режим обтекания твердого тела жидкостью. Решение (закон)Стокса для силы давления потока.
- •54 Турбулентный режим обтекания твердого тела жидкостью. Формула Ньютона для определения полного сопротивления.
- •55 Осаждение частиц под действием силы тяжести. Скорость витания частицы.
- •56 Движение жидкости через неподвижные и подвижные зернистые и пористые слои.
- •57 Определение сопротивления слоя (потери давления).
- •58 Гидродинамика кипящего (псевдоожиженного)слоя. Скорость и число псевдоожижения. Поршневое псевдоожижение, фонтанирование. Сопротивление кипящего слоя.
- •59 Пленочное течение жидкости. Линейная плотность орошения. Принцип работы центробежного скруббера.
- •60 Барботаж. Случаи использования барботажа в промышленности строительных материалов. Пузырьковый и струйный виды работы аппарата. Определение давления и расхода воздуха.
- •61 Пневмотранспорт. Принципиальная схема пневмотранспорта цемента на заводахЖби.
- •62 Гидротранспорт. Порционный и непрерывный способы подачи бетонной смеси.
- •63 Гидравлическая классификация и воздушная сепарация. Назначение.
- •64 Принципиальные схемы вертикальных и гидромеханических (спиральных) классификаторов.
- •65 Принцип работы проходного, циркуляционного сепараторов и циклона.
- •66 Течение неньютоновских жидкостей. Их классификация.
- •67 Характеристики бингамовских, псевдопластичных и дилатантных жидкостей.
- •68 Характеристики тиксотропных, реопектических имаксвелловских жидкостей.
- •69 Механические модели бингамовской и максвелловской жидкостей.(паливо)
- •70 Основы теплопередачи. Теплопроводность, конвекция, тепловое излучение.
- •Конвекция – процесс распространения теплоты перемещением частиц. Плотность теплового потока, передаваемого конвекцией, описывается уравнением Ньютона-Рихмана
- •71 Сложный теплообмен.
- •72 Совместный перенос тепла конвекцией и излучением.
- •73 Теплообмен при фазовых переходах.
- •74 Внешний и внутренний теплообмен.
- •75 Движущая сила тепловых процессов.
- •76 Теплообменные аппараты
- •77 Классификация теплообменных аппаратов.
- •78 Интенсификация тепловых процессов.
- •79 Равновесие при массопередаче. Движущая сила процесса.
- •80 Материальный баланс массопередачи и уравнение рабочей линии процесса.
- •81 К выводу уравнения линии рабочих концентраций.
- •82 Равновесие между фазами.
- •83 Материальный баланс процессов массообмена.
- •84 Влажное состояние материала, подвергаемого тепловой обработке. Виды влажных материалов.
- •85 Формы связи влаги с материалом: энергетическая классификация.
- •86 Способы удаления влаги и виды сушки.
- •87 Статика и кинетика сушки. Их назначение.
- •88 Статика сушки. Материальный и тепловой баланс сушки.
- •89 Кинетика сушки. Вид кривых влажности, температуры и скорости сушки, характеризующих процесс сушки на модели процесса для высоковлажного материала.
53 Ламинарный режим обтекания твердого тела жидкостью. Решение (закон)Стокса для силы давления потока.
При
небольших скоростях и малых размерах
тел или при высокой вязкости среды режим
движения ламинарный, тело окружено
пограничным слоем жидкости и
плавно обтекается потоком (рис. 4.2).
(а) – ламинарный режим; (б) – турбулентный режим
Рисунок 4.2 – Обтекание жидкостью твердого тела
Потеря давления в этом случае связана главным образом с преодолением сопротивления трения. При обтекании тела в форме шара потоком вязкой жидкости, когда основным фактором, определяющим сопротивление, являются силы трения, силу сопротивления определяют по формуле Стокса
,
где
d
– диаметр шара; μ
– динамическая вязкость жидкости;
– скорость потока жидкости.
54 Турбулентный режим обтекания твердого тела жидкостью. Формула Ньютона для определения полного сопротивления.
C развитием турбулентного движения в потоке возникают различные завихрения и образование воздушных пузырьков.
В общем случае сопротивление при обтекании потока жидкости или тела в покоящейся жидкости, представляет собой сумму сопротивлений трения и давления (сопротивления формы). Суммарное(полное) сопротивление (часть его называется лобовым) обычно определяется по формуле Ньютона:
(1)
где с – коэффициент лобового сопротивления;
S – площадь сечения обтекаемого тела по Миделю (площадь проекции тела на плоскость перпендикулярная векторам скорости набегающего потока);
-
плотность жидкости; V
– скорость потока жидкости.
Коэффициент лобового сопротивления «с» зависит от формы обтекаемого тела и числа Рейнольдса Re. При исследовании движения шарообразных частиц диаметром d были установлены 3-и области, каждой из которых соответствуют определенные характерные зависимости «с» от «Re» (с=f(Re)):
Ламинарная
область (область действия законов
Стокса):
Переходная
область:
Автомодельная
область:
Подставляя в уравнение (1) значение «с», видим, что в ламинарной области сила сопротивления пропорциональна скорости (F~V):
В переходной области F~V1.4, в автомодельной области F~V2, поэтому ее называют областью квадратичного сопротивления.
При
обтекании форм значительно отличающихся
от формы шара, значения коэффициентов
значительно больше и зависят не только
от критериев Рейнольдса, но и от факторов
формы:
,
где
- поверхность шара имеющая тот же объем,
что и рассматриваемая поверхность
.
55 Осаждение частиц под действием силы тяжести. Скорость витания частицы.
В инженерной практике часто приходится иметь дело с движением 2-ухфазной жидкостью (жидкость + смесь твердых частиц). Законы движения таких жидкостей имеют поэтому большое значение. В промышленности СМ взвесенесущие потоки применяют при пневмотранспорте цемента, гидро транспорте бетонной смеси, сушке и обжиге сыпучих материалов во взвешенном состоянии и других технологических процессах.
Особенности взвесенесущих потоков в значительной степени определяются характером обтекания твердых частиц потоком жидкости или газа.
Пусть в вертикальной трубе диаметром D движется частица в форме шара диаметром d, причем D>>d. Поток вязкой жидкости направлен снизу вверх, скорость потока V. На частицу действует сила F (давление потока) и сила тежести G=mg.
С
хема
сил, действующих на частицу, находящуюся
в восходящем потоке:
В зависимости от соотношения этих сил частица может подниматься, опускаться или оставаться неподвижной. Условие равновесия будет наблюдаться в том случае, если F=G. Это случай, так называемого, витания частицы.
Т.е. скорость восходящего потока при котором частица остается статически на одном уровне, находится во взвешенном состоянии:
. (3)
Очевидно, если скорость потока станет равная нулю «0», то частица будет осаждаться со скоростью равной скорости витания, следовательно скорость витания и свободного осаждения частицы равноценны. Т.е. уравнение (3) при известном «с», позволяет определить скорость витания или скорость свободного осаждения частицы, в зависимости от конкретных условий решаемой задачи. Недостаток этого уравнения заключается в неопределенности коэф-та "c", зависящего от Re, который в свою очередь определяются по скорости свободного осаждения или витания частицы. Только в ламинарной области (области действия законов Стокса) при Re<=2, где с= 24/Re.
Ур-е
(3) принимает вид:
.
За пределами законов Стокса, уравнение (3) обычно решается подбором или графически.