
- •1. Понятие о первообразной и неопределенном интеграле.
- •2. Основные свойства неопределенного интеграла.
- •3. Основные методы интегрирования. Метод замены переменной интегрирования.
- •4. Основные методы интегрирования. Интегрирование по частям.
- •5. Интегрирование простейших иррациональностей.
- •6. Понятие определенного интеграла.
- •7. Геометрический смысл определенного интеграла.
- •8. Основные свойства определенного интеграла.
- •9. Интеграл с переменным верхним пределом. Формула Ньютона-Лейбница.
- •11. Несобственные интегралы с бесконечными пределами интегрирования. Несобственные интегралы с бесконечными пределами интегрирования
- •22. Решение линейного неоднородного дифференциального уравнения методом вариации произвольных постоянных.
- •28. Понятие знакочередующегося ряда. Теорема Лейбница.
- •31. Классическое определение вероятности.
- •32. Свойства вероятности.
- •33. Понятие относительной частоты. Статистическая вероятность.
- •34. Геометрические вероятности.
- •35. Основные формулы комбинаторики.
- •36. Теоремы сложения вероятностей.
- •37. Теоремы умножения вероятностей.
- •38. Формула полной вероятности.
- •39. Вероятность гипотез. Формулы Бейеса.
- •40. Повторение испытаний. Формула Бернулли.
- •41. Повторение испытаний. Локальная теорема Лапласа.
- •42. Повторение испытаний. Интегральная теорема Лапласа.
- •45. График функции распределения.
- •46. Плотность распределения вероятностей нсв. Свойства плотности распределения.
- •47. Нахождение функции распределения по известной плотности распределения.
- •48. Математическое ожидание дсв.
- •49. Свойства математического ожидания. Математическое ожидание числа появлений события в независимых испытаниях.
- •50. Дисперсия дискретной случайной величины.
- •51. Свойства дисперсии. Дисперсия числа появлений события в независимых испытаниях.
- •52. Числовые характеристики непрерывных случайных величин.
- •53. Понятие о теоретических моментах распределения.
- •Влияние параметров нормального распределения на форму нормальной кривой.
- •81. Статистическая проверка параметрических гипотез. Ошибки первого и второго рода. П.2. Ошибки первого и второго рода.
- •Проверка гипотез равенства математических ожиданий двух случайных величин (большие независимые выборки).
- •89. Геометрическая интерпретация и графическое решение злп.
- •90. Понятие симплексного метода.
- •91. Понятие двойственности. Построение пары взаимно двойственных
- •92. Первая теорема двойственности и ее экономическое содержание.
- •93. Вторая теорема двойственности и ее экономическое содержание.
- •1. Понятие о первообразной и неопределенном интеграле.
- •2. Основные свойства неопределенного интеграла.
- •3. Основные методы интегрирования. Метод замены переменной интегрирования.
89. Геометрическая интерпретация и графическое решение злп.
90. Понятие симплексного метода.
Симплекс-метод – один из наиболее эффективных методов численного решения задач ЛП. Суть понятия «симплекс» заключается в следующем. Для тела в k -мерном пространстве симплексом называется множество, состоящее из k +1 вершин этого тела. Так, при k = 2, т.е. на плоскости, симплексом будут вершины треугольника; при k = 3 симплексом являются вершины четырехгранника, например тетраэдра, и т.д. Такое название методу дано по той причине, что в его основе лежит последовательный перебор вершин ОДЗП с целью определения координат той вершины, в которой функция цели имеет кстремальное значение.
Решение задачи с помощью симплекс-метода разбивается на два основных этапа. На первом этапе находят одно из решений, удовлетворяющее системе ограничений . Системы, в которых переменных больше, чем ограничений N > m, называются неопределенными. Они приводятся к определенным системам (N = m) путем приравнивания к нулю N-m каких-либо переменных. При этом остается система m уравнений с m неизвестными, которая имеет решение, если определитель системы отличен от нуля. В симплекс-методе вводится понятие базисных переменных, или базиса. Базисом называется любой набор из m таких переменных, что определитель, составленный из коэффициентов при этих переменных в m-ограничениях, отличен от нуля. Остальные N-m переменных называются небазисными, или свободными переменными. Если принять, что все небазисные переменные равны нулю, и решать систему ограничений относительно базисных переменных, то получим базисное решение.
В системе из m уравнений с N неизвестными общее число базисных решений при N > m определяется числом сочетаний
Базисное решение, в котором все xi0, i = 1,m, называется допустимым базисным решением. Таким образом, первый этап решения, используя симплекс-метод, завершается нахождением допустимого базисного решения, хотя бы и неудачного.
На втором этапе производится последовательное улучшение найденного решения. При этом осуществляется переход от одного допустимого базисного решения к другому таким образом, чтобы значение целевой функции улучшилось. Процесс решения, используя симплекс-метод, продолжается до тех пор, пока не будет достигнуто наименьшее (или наибольшее) значение функции цели. Геометрически это означает переход по ребрам из одной вершины многогранника допустимых значений в другую по направлению к той, в которой значение функции цели достигает экстремума. Симплекс-метод дает оптимальную процедуру перебора базисных решений и обеспечивает сходимость к экстремальной точке за конечное число шагов. Используя симплекс-метод, вычисления на втором этапе ведутся по следующей схеме:
1) базисные переменные и функция цели выражаются через небазисные переменные;
2) по определенному правилу выбирается та из небазисных переменных, изменение значения которой способно улучшить значение F(x) , и она вводитя в базис;
3) определяется, какая из базисных переменных должна быть выведена из базиса, при этом новый набор базисных переменных, образующийся на каждом шаге, отличается от предыдущего только одной переменной;
4) базисные переменные и функция цели выражаются через новые небазисные переменные, и повторяются операции 2) и 3).
Если на определенном шаге в симплекс-методе окажется, что изменение значений любой из небазисных переменных не может улучшить F(x) , то последнее базисное решение оказывается оптимальным.
Рассмотрим пример, относящийся к задачам организационно-экономического управления и помогающий уяснить содержание симплекс-метода.