Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Первые вопросы.docx
Скачиваний:
7
Добавлен:
24.09.2019
Размер:
209.88 Кб
Скачать

Физические свойства электрического поля

В настоящее время наука ещё не достигла понимания физической сущности таких полей, как электрическое, магнитное и гравитационное, а также их взаимодействия друг с другом. Пока еще только описаны результаты их механического воздействия на заряженные тела, а также существует теория электромагнитной волны, описываемая Уравнениями Максвелла.

Эффект поля — Эффект поля заключается в том, что при воздействии электрического поля на поверхность электропроводящей среды в её приповерхностном слое изменяется концентрация свободных носителей заряда. Этот эффект лежит в основе работы полевых транзисторов.

Основным действием электрического поля является силовое воздействие на неподвижные (относительно наблюдателя) электрически заряженные тела или частицы. Если заряженное тело фиксировано в пространстве, то оно под действием силы не ускоряется. На движущиеся заряды силовое воздействие оказывает и магнитное поле (вторая составляюшая силы Лоренца).

Свойства электрического поля

  1. Порождается электрическим зарядом;

  2. Обнаруживается по действию на заряд;

  3. Действует на заряды с некой силой, не имеет границ.

Электрическое поле обладает энергией. Плотность этой энергии определяется величиной поля и может быть найдена по формуле

где E — напряжённость электрического поля, D — индукция электрического поля.

25) Электрический ток, магнитное поле и их характеристики. Энергия магнитного поля.

Электрический ток — это упорядоченное движение заряженных частиц в проводнике. Чтобы он возник, следует предварительно создать электрическое поле, под действием которого вышеупомянутые заряженные частицы придут в движение.

Основные величины электрического тока

Количество электричества и сила тока. Сила действия электрического тока зависит от величины заряда, который протекает по цепи за определенную единицу времени. Чем больше электронов переместилось от одного полюса источника к другому, тем больше общий заряд, перенесенный электронами. Такой общий заряд называется количество электричества, проходящее сквозь проводник.

Силой тока называется величина, которая равна отношению электрического заряда, прошедшего через поперечное сечение проводника, к времени его протекания. Единицей измерения заряда является кулон (Кл), время измеряется в секундах (с). В этом случае единица силы тока выражается в Кл/с. Такую единицу называют ампером (А). Для того чтобы измерить силу тока в цепи, применяют электроизмерительный прибор, называемый амперметром.

Электрическое напряжение. Напряжение — это отношение работы тока на определенном участке электрической цепи к заряду, протекающему по этому же участку цепи. Работа тока измеряется в джоулях (Дж), заряд — в кулонах (Кл). В связи с этим единицей измерения напряжения станет 1 Дж/Кл. Данную единицу назвали вольтом (В).

Электрическое сопротивление. При использовании разных проводников сила тока, имеющаяся в электрической цепи, разная. Разные проводники имеют разное электрическое сопротивление, которое представляет собой физическую величину. Сопротивление проводника обычно обозначается буквой R, длина проводника — L, площадь поперечного сечения — S. В этом случае можно сопротивление записать в виде формулы:

R = р * L/S

где коэффициент р называется удельным сопротивлением. Данный коэффициент выражает сопротивление проводника длиною в 1 м при площади поперечного сечения, равной 1 м2. Удельное сопротивление выражается в Ом х м. Поскольку провода, как правило, имеют довольно малое сечение, то обычно их площади выражают в квадратных миллиметрах. В этом случае единицей удельного сопротивления станет Ом х мм2/м.

Электрическая емкость. Электрическая емкость двух проводников — не что иное, как отношение заряда одного из них к разности потенциалов между этим проводником и соседним. Чем меньше будет напряжение при получении заряда проводниками, тем больше их емкость. За единицу электрической емкости принимают фарад (Ф). На практике используются доли данной единицы: микрофарад (мкФ) и пикофарад (пФ).

Работа и мощность электрического тока. Работа измеряется в джоулях, напряжение — в вольтах, сила тока — амперах, время — в секундах. В связи с этим 1 Дж = 1В х 1А х 1с. Из этого получается, для того чтобы измерить работу электрического тока, следует задействовать сразу три прибора: амперметр, вольтметр и часы.

Мощность электрического тока равна отношению работы тока к времени, в течение которого она совершалась. Мощность обозначается буквой «Р» и выражается в ваттах (Вт). На практике используют киловатты, мегаватты, гектоватты и пр. Для того чтобы замерить мощность цепи, нужно взять ваттметр. Электротехники работу тока выражают в киловатт-часах (кВтч).

Магни́тное по́ле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения[1], магнитная составляющая электромагнитного поля[2]

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).

Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля.

Основной силовой характеристикой магнитного поля является вектор магнитной индукции (вектор индукции магнитного поля)[3][4]. С математической точки зрения  — векторное поле, определяющее и конкретизирующее физическое понятие магнитного поля. Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина).

Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал.

  • Нередко в литературе в качестве основной характеристики магнитного поля в вакууме (то есть в отсутствие магнитной среды) выбирают не вектор магнитной индукции а вектор напряженности магнитного поля , что формально можно сделать, так как в вакууме эти два вектора совпадают[5]; однако в магнитной среде вектор не несет уже того же физического смысла[6], являясь важной, но всё же вспомогательной величиной. Поэтому при формальной эквивалентности обоих подходов для вакуума, с систематической точки зрения следует считать основной характеристикой магнитного поля именно

Магнитное поле можно назвать особым видом материи[7], посредством которого осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом.

Магнитные поля являются необходимым (в контексте специальной теории относительности) следствием существования электрических полей.

Вместе, магнитное и электрическое поля образуют электромагнитное поле, проявлениями которого являются, в частности, свет и все другие электромагнитные волны.

Электрический ток(I), проходя по проводнику, создает магнитное поле (B) вокруг проводника.

  • С точки зрения квантовой теории поля магнитное взаимодействие — как частный случай электромагнитного взаимодействия переносится фундаментальным безмассовым бозоном — фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля), часто (например, во всех случаях статических полей) — виртуальным.