
- •2. Основное условие управляемости ядерного реактора и технические средствп управления.
- •3. Роль трития в ядерном оружии. Цели и физический смысл бустирования ядерного заряда.
- •1.Энергетический эквивалент массы. Энергия связи ядра и энергия связи на нуклон.
- •2. Процессы протекающие при подрыве ядерного взрывного устройства деления. Оценка времени существования надкритического состояния и времени набора поколений.
- •3. Трудности регулирования цепной реакции деления с использованием мгновенных нейтронов.
- •Нейтроны при делении:
- •1. Свойство насыщения ядерных сил и его следствия
- •2. Типы радиоактивного распада. Примеры.
- •3.Состав оружейного плутония. Требования к конструкции и эксплуатационному циклу реактора-наработчика, оценка его производительности по плутонию.
- •1. Зависимость энергии связи на нуклон от массы ядра (кривая Бете-Вайцзекера). Оценка по этой зависимости энерговыделения при делении.
- •2. Преимущества гетерогенной компоновки ядерного реактора.
- •3. Принципы количественной оценки риска создания ядерного оружия различными государствами.
- •1. Полуэмпирическая формула Бете-Вайцзекера для массы ядер. Физический смысл её слагаемых.
- •2. «Урановый путь» создания ядерного оружия, его сравнительные преимущества и недостатки и реализация в ядерных государствах.
- •4 Способа добычи урана:
- •3. Формула 4х сомножителей и ее упрощенние в случае гетерогенного реактора.
- •Общие сведения
- •1. Анализ делимости ядер и возможности достижения цепной ядерной реакции по параметрам потенциальных барьеров.
- •2. Физика эмиссии запаздывающих электронов деления.
- •3. Плутоний – 238, его основные свойства, каналы его образования при облучении урана в реакторе и роль в ядерном оружии.
- •1. Распределение продуктов деления по массам (оценка по капельной модели и эксперимент). Причины расхождения.
- •2. Полоний – бериллиевый нейтронный инициатор. Методы наработки полония. Проблемы обращения с полонием.
- •3. Количественная оценка энерговыделения при делении. Оценка сравнительной энергоёмкости урана и угля
- •1. Основные принципы безопасной эксплуатации реактора
- •2. Основные типы энергетических ядерных реакторов на тепловых нейтронах, их преимущества и недостатки.
- •3. Преимущества и недостатки использования различных делящихся материалов ядерном оружии. Учет этих факторов в проблеме нераспространения.
- •2. Неоптимальное время включения нейтронного инициатора яву. «Проскок» и «хлопок», причины «хлопка».
- •3. Физика эмиссии запаздывающих электронов деления.
- •1. Физика эмиссии мгновенных нейтронов деления. Среднее число нейтронов на деление.
- •2. Системная роль ядерного оружия, его принципиальные отличия от иных вооружений.
- •3. Ксеноновое отравление ядерного топлива и «йодная яма». Самариевое зашлаковывание топлива. Проблемы, связанные с отравлением и зашлаковыванием, и способы их решения.
- •Учёт иодной ямы при проектировании
- •1. Факторы, влияющие на величину критической массы размножающей системы.
- •2. Энергетический выход ядерного взрывного устройства и оптимальное время включения нейтронного инициатора.
- •1. Понятие о ядерной реакции. Сечения взаимодействия, порядок его величины, его единицы.
- •2 Природные и искусственные ядерные материалы
- •3. Плутоний – 240, его свойства, каналы образования и роль в яо.
- •1. Упругое рассеяние и его основные закономерности в предельных случаях. Замедление нейтронов.
- •2. Ядерное оружие стран ‘ядерной пятерки’ (качественный обзор и системное назначение).
- •3. Изотопный состав и физические св-ва реакторного плутония. Оценка возможности использования реакторного плутония в ядерном оружии.
- •1.Эффективный коэффициент размножения нейтронов в однокомпанентной и многокомпанетных средах.
- •2. Временная схема физических процессов в ядерном взрывном устройстве. Роль нейтронного инициирования.
- •3. Назначение и типы замедлителей. Соотношение количества топлива и замедлителя в реакторе на тепловых нейтронах. Основные физические и эксплуатационные характеристики.
- •2. Плутониевый путь создания ядерного оружия и его реализация в различных странах.
- •3.Аэс с водо-водяными энергетическими реакторами (под давлением и кипящими). Физико-технические схемы, сравнительные преимущества и недостатки.
- •1. Основное уравнение радиоактивного распада. Связь между постоянной распада и периодом полураспада. Равновесное количество радиоактивного материала.
- •2. Тепловыделяющие элементы и тепловыделяющие сборки (назначение, устройства, материалы).
- •3. Особенности технологии плутония. Проблемы обращения с плутонием.
- •1. Пороговые и беспороговые реакции ядерного деления. Символьная запись, типичная энергетическая зависимость сечения, примеры.
- •2. Пригодность различных материалов и веществ для использования в качестве ядерного топлива. Причины исключительного значения урана-235 для ядерной энергетики.
- •3. Основные принципы действия и конструкции термоядерного взрывного устройства. Роль радиационного обжатия рентгеновским излучением инициатора ( с количественной оценкой энергии излучения)
- •1. Макроскопические сечения и коэффициент размножения в бесконечной размножающей среде Теория размножающих систем
- •2. Основные ядерно-физические свойства плутония. Физич принцип наработки и имеющиеся запасы оружейного Pu.
- •3. Аэс с канальным водо-графитовым реактором рбмк. Преимущества и недостатки в сравнении с аэс с реактором ввэр.
- •1. Уравнение скорости деления для бесконечной размножающей среды. Физический смысл его основных параметров.
- •2. Время жизни вторичного нейтрона в различных средах с учетом различных факторов( наличие либо отсутствие замедлителя, соотношение между реактивностью и долей запаздывающих нейтронов деления)
- •1. Основные принципы достижения цепного процесса в естественной смеси изотопов урана. Назначение отражателя.
- •2. Ядерное оружие Индии и Пакистана. Особенности ядерных статусов Израиля и кндр. Назначение и роль ядерных испытаний.
- •3. (N,z) карта нуклидов и ее основные области.
- •1. Время жизни вторичного нейтрона в различных средах. Причина необходимости высокого обогащения оружейного делящегося материала по урану-235 и плутонию-239.
- •2. Нейтронно-избыточные и нейтронно-дефицитные ядра. Типичные моды их распада.
- •3. Назначение и состав теплоносителя. Схемы теплосъёма и теплопередачи в реакторах различных типов.
- •Из вики, в принципе не очень важно, кому не надо смело удаляйте Общие сведения
- •1. Пушечная (ствольная) схема ядерного боеприпаса. Основной физический принцип. Инженерное оформление, материал, преимущества и недостатки.
- •3. Реактивность и запас реактивности. Роль запаса реактивности в управлении реактором.
- •1. Причины невозможности создания ядерного взрывного устройства на замедленных нейтронах. «Бомба-реактор» как пример тупиковой технологической ветви.
- •2. Аэс с водо-водяными энергетическими реакторами (под давлением и кипящими). Физико-технические схемы, сравнительные преимущества и недостатки.
- •3. Энергетические условия устойчивости ядер по отношению к α- и β– -распаду.
3. Плутоний – 238, его основные свойства, каналы его образования при облучении урана в реакторе и роль в ядерном оружии.
238Pu – вредный изотоп, греется, большая интенсивность деления, альфа-радиоактивен. Самопроизвольно испускает нейтроны, что приводит к «хлопку» => играет отрицательную роль в ядерном оружии.
Содержание 238Pu – в оружейном Pu < 0,5 %
Билет 7
1. Распределение продуктов деления по массам (оценка по капельной модели и эксперимент). Причины расхождения.
1ый откр продукт дел-я: Ba, Sr, Kr, ксенон – это деление не пополам
Ag, кадмий – продукты симметричного дел-я
Выделившаяся эн-я оказывается меньше, чем предсказывалось
Процесс деления атомного ядра легко описать на основе жидкокапельной модели. Пусть ядро изменяет свою форму, например из сферического станет эллипсоидальным. Объем ядра не изменяется (ядерная материя практически несжимаема), но поверхность увеличивается, а кулоновская энергия уменьшается (увеличивается среднее расстояние между протонами).
E = (c/r) * z1z2 (где z1, z2- заряды осколков)
E = c' * (z1 * (zF – z1))
E = c' * (z1 zF – z12)
dE/dz1 = c' * (zF – 2z1)
zF = 2z1
z1 = zF /2 => двойное деление
Характерной особенностью деления является то, что осколки, образующиеся в результате деления, как правило, имеют существенно разные массы. В случае наиболее вероятного деления 235U отношение масс осколков равно 1.46. Тяжелый осколок при этом имеет массовое число 139, легкий - 95. Деление на два осколка с такими массами не является единственно возможным. Распределение по массам осколков деления 235U тепловыми нейтронами показано на рис.
При делении тепловыми нейтронами вероятность симметричного деления примерно на три порядка меньше, чем в случае наиболее вероятного деления на осколки с A = 139 и 95. Капельная модель не исключает возможности асимметричного деления, однако, даже качественно не объясняет основных закономерностей такого деления. Асимметричное деление можно объяснить влиянием оболочечной структуры ядра. Ядро стремится разделиться таким образом, чтобы основная часть нуклонов осколка образовала устойчивый магический остов.
-
скопления в верхних дугах – радиоакт
эл-ты (I-131, Sr-90,…)
Делящееся ядро выдел. оболочки как в правом, так и в левом пике.
r – эксцентриситет (числовая характеристика конического сечения, показывающая степень его отклонения от окружности).
r=0 – исходное делящееся сферическое ядро.
Эксперимент: опыт: капля анилина в воде(одинаковая плотность, но она не растворяется в воде). она передвигается в объеме воды, а когда подходит к границе воды, ее затягивает снова к середине объема. причем эта капля принимает форму шара. чтобы разделить шар, нам надо преодолеть точку неозврата.
2. Полоний – бериллиевый нейтронный инициатор. Методы наработки полония. Проблемы обращения с полонием.
Полоний - бериллиевый инициатор - основная составляющая бомбы, это конструкция которая не испускает нейтроны до определенного времени, должен быть долгоживущим тк его сложно менять - он внутри бомбы, и не слишком долгоживущий, оптимальный полоний. Покрытая полонием сетка была заключена в танталовую сферу, которая размещалась внутри урановой оболочки с бериллиевыми гранулами внутри. Система была спроектирована так, что имплозионная ударная волна втолкнет кусочки бериллия через тантал для того, чтобы смешать их с полонием. Полоний представляет собой сильный источник альфа-частиц. Бериллий, смешиваясь с полонием, начинает поглощать альфа-частицы и, в свою очередь, испускать нейтроны. Поэтому в данном типе нейтронного инициатора особенно важно обеспечить очень хорошее и быстрое перемешивание бериллия и полония.
Посередине – золотая фольга. Слева альфа-частицы (полоний). Справа 9Be.
9Be + α -> 13*C -> 12C + n.
Фольга должна разорваться в момент достижения крит массы и дать 103 нейтронов.
На 1 грамм U ~ 10-10 210Po. Получают из отходов переработанной урановой руды.
210Po летучий и супертоксичный металл.
Если не удерживать его в герметичном контейнере – ½ исходной массы испарится за 3ое суток. Возможно лучевое поражение, нужно работать в герметичных боксах.