
- •Задачи статистического и динамического анализа сау
- •Классификация объектов тепловой энергетики по параметру регулирования и их математическое описание.
- •Общий вид экспериментальных переходных кривых теплоэнергетических процессов. Обобщенная энергетическая форма уравнений динамики регулируемых объектов.
- •Понятие и основные сведения об алгоритме. Способы записи алгоритмов
- •Схемы и основные структуры алгоритмов
- •Декомпозиция алгоритмов управления и сбора информации в технологической системе.
- •Классификация процессов функционирования энергоблока аэс. Типовые алгоритмы управления
- •Типовые алгоритмы регулирования, типовые регуляторы и их динамические характеристики
- •Структурная схема унифицированного регулятора сцар.
- •Выбор схем регулирования типовых теплоэнергетических процессов и методы настройки типовых регуляторов.
- •Структура формирования технологического цикла. Общая последовательность
- •Комбинационные детерминированные модели технологического цикла.
- •Последовательностные детерминированные модели технологического
- •Комбинационные и последовательностные автоматы. Структура
- •Основные логические функции. Реализация основных логических функций на релейно-контактных схемах.
- •Основные логические элементы и их функции. Функционально полный набор логических элементов.
- •Минимизация логических функций методом матриц Карно.
- •Виды запоминающих устройств. Триггеры. Регистры.
- •Структура и принципы построения эвм.
- •Классификация эвм по сфере применения.
- •Структура и основные функции увм. Иерархическая структура асу тп.
- •Структура и функции традиционных асу тп аэс.
- •Структура и функции увс "Комплекс-Титан 2"
- •Основные недостатки традиционных асу аэс.
- •Обобщённая структура и функции информационно-управляющей
- •Человеко-машинный интерфейс (чми), реализованный в свбу асу тп аэс
- •Система регулирования мощности реактора. Режимы работы. Структура и
- •Центробежный регулятор частоты вращения турбины. Назначение,
- •Система регулирования уровня в парогенераторе.
- •Способы регулирования давления пара перед турбиной.
Типовые алгоритмы регулирования, типовые регуляторы и их динамические характеристики
Основными функциями типового регулятора являются усиление сигнала рассогласования и формирование корректирующих сигналов от ошибки, ее производной и интеграла ошибки. Различают несколько разновидностей регуляторов в зависимости от алгоритма формирования корректирующего сигнала: пропорциональный (П-регулятор), интегральный (И-регулятор), пропорционально-интегральный (ПИ-регулятор), пропорционально-дифференциальный (ПД-регулятор), пропорционально-интегрально-дифференциальный (ПИД-регулятор).
Опишем характеристики и параметры настройки типовых регуляторов.
• П-регулятор имеет статическую линейную характеристику, печаточная функция его равна кр. П-регулятор безынерционно реагирует на ступенчатое воздействие.
• И-регулятор
имеет
передаточную функцию
вида
где Т — постоянная времени интегрирования. На входной единичный ступенчатый сигнал И-регулятор реагирует линейным сигналом, причем за время Т выходной сигнал достигает единицы.
• ПИ-регулятор имеет двухпараметрическую передаточную функцию вида
где кр, Ти — коэффициент передачи и время изодрома соответственно. ПИ-регулятор является астатическим регулятором, он совмещает в себе свойства П- и И-регуляторов, его реакция на единичное воздействие представляется мгновенным скачком величины кр и последующим линейно растущим сигналом с наклоном Ти/кр.
• ПД-регулятор имеет передаточную функцию вида
где к , Т — коэффициент передачи и время упреждения соответственно, ПД-регулятор в стационарном режиме ведет себя как пропорциональное звено, но при изменении входного сигнала вырабатывает дополнительную составляющую, соответствующую производной от входного сигнала. Переходная функция регулятора приведена на рис. 5.3, а.
• ПИД-регулятор имеет трехпараметри-ческую передаточную функцию вида
где кр, Г, ТИ — коэффициент передачи, время упреждения и время изодрома соответственно. Структурная модель ПИД-регулятора может быть представлена и в мультипликативной форме
Переходная функция регулятора приведена на рис. 5.3, б. Логарифмическая амплитудная частотная характеристика ПИД-регулятора имеет симметричный вид относительно своей среднечастотной части, наклон в низкочастотной части составляет —20 дБ/дек и 20 дБ/дек в высокочастотной части характеристики, средние частоты подавляются.
(про типовые алгоритмы регулирования в вопросе 68)
Структурная схема унифицированного регулятора сцар.
Цифровые регуляторы, входящие в состав СЦАР (система цифрового авторегулирования), обеспечивают поддержание регулируемых параметров в заданных пределах и с заданной степенью точности (в соответствии с техническими требованиями к алгоритмическому обеспечению СЦАР) с учетом сложной обратной связи регуляторов, в состав которой входят влияющие на объект регулирования другие технологические параметры, не являющиеся регулируемыми.
Объектами регулирования СЦАР являются технологические системы, оборудование в объеме машзала турбоустановки К-1000-60/1500-2.
Реализация систем регулирования технологическими параметрами в соответствии с данной структурной схемой обеспечивает регулирование «до себя» и «после себя» для статических и астатических объектов регулирования по П-. ПИ-. ПИД- законам управления с учетом охвата исполнительного механизма отрицательной обратной связью.
Структурная схема регуляторов, реализуемых с помощью системы автоматического регулирования турбинного отделения, приведена на структурной схеме, приведенной на рисунке. Схема является унифицированной для всех систем цифрового авторегулирования.
Рис. 1. – Структурная схема регулятора
На структурной схеме обозначены:
1 - корректор уставки (КУ);
2 - формирователь программы (ФП);
3, 8 - формирователи рассогласования;
4 - формирователь зоны нечувствительности;
5 - формирователь обратной связи;
6 - блок обработки аналоговых сигналов;
7 - формирователь закона регулирования;
9 - объект регулирования;
10 - релейный элемент;
11, 12 - модели исполнительного механизма;
13 - блок контроля регулирующего клапана;
14 - исполнительный механизм.