
- •Задачи статистического и динамического анализа сау
- •Классификация объектов тепловой энергетики по параметру регулирования и их математическое описание.
- •Общий вид экспериментальных переходных кривых теплоэнергетических процессов. Обобщенная энергетическая форма уравнений динамики регулируемых объектов.
- •Понятие и основные сведения об алгоритме. Способы записи алгоритмов
- •Схемы и основные структуры алгоритмов
- •Декомпозиция алгоритмов управления и сбора информации в технологической системе.
- •Классификация процессов функционирования энергоблока аэс. Типовые алгоритмы управления
- •Типовые алгоритмы регулирования, типовые регуляторы и их динамические характеристики
- •Структурная схема унифицированного регулятора сцар.
- •Выбор схем регулирования типовых теплоэнергетических процессов и методы настройки типовых регуляторов.
- •Структура формирования технологического цикла. Общая последовательность
- •Комбинационные детерминированные модели технологического цикла.
- •Последовательностные детерминированные модели технологического
- •Комбинационные и последовательностные автоматы. Структура
- •Основные логические функции. Реализация основных логических функций на релейно-контактных схемах.
- •Основные логические элементы и их функции. Функционально полный набор логических элементов.
- •Минимизация логических функций методом матриц Карно.
- •Виды запоминающих устройств. Триггеры. Регистры.
- •Структура и принципы построения эвм.
- •Классификация эвм по сфере применения.
- •Структура и основные функции увм. Иерархическая структура асу тп.
- •Структура и функции традиционных асу тп аэс.
- •Структура и функции увс "Комплекс-Титан 2"
- •Основные недостатки традиционных асу аэс.
- •Обобщённая структура и функции информационно-управляющей
- •Человеко-машинный интерфейс (чми), реализованный в свбу асу тп аэс
- •Система регулирования мощности реактора. Режимы работы. Структура и
- •Центробежный регулятор частоты вращения турбины. Назначение,
- •Система регулирования уровня в парогенераторе.
- •Способы регулирования давления пара перед турбиной.
Классификация процессов функционирования энергоблока аэс. Типовые алгоритмы управления
Классификация процессов функционирования энергоблока:
стационарные процессы — поддержание параметров, обеспечивающих проектную работу технологического оборудования;
многократные, систематически повторяющиеся технологические процессы — поддержание водно-химического режима, борное регулирование, вывод/ ввод оборудования в соответствии с графиком ремонта и т.п.;
однократные длительные технологические процессы при нормальной эксплуатации — пуск и останов энергоблока;
быстропротекающие процессы с нарушением условий нормальной эксплуатации — отключение части оборудования;
быстропротекающие процессы при возникновении исходных событий проектных аварий.
В зависимости от режима функционирования существенно меняется содержание задач управления. Так, при работе в режимах пуска и останова энергоблока, изменения мощности задачей системы управления является проведение переходных режимов с требуемым качеством и в определенных временных интервалах. Основной задачей при этом является обеспечение безопасного управления энергоблоком.
При работе в базовом режиме задачей системы управления является поддержание требуемого стационарного состояния на неограниченном интервале времени. Основная задача — стабилизация режима и поддержание динамического баланса мощностей в элементах энергоблока.
Типовые алгоритмы управления.
Алгоритм управления, его структура и параметры зависят не только от задачи управления, но и от того объекта, которым предстоит управлять. Многообразие объектов управления, не поддающихся типизации, отсутствие единой четкой классификации задач управления затрудняют классификацию алгоритмов управления.
Для упрощенного представления можно выделить среди алгоритмов управления две наиболее обобщенные и укрупненные группы: алгоритмы управления состоянием и сменой состояний. К первым могут быть отнесены алгоритмы поддержания заданного рационального либо предварительно рассчитанного оптимального значения технологического параметра. Они получили название алгоритмов стабилизации или регулирования. Среди них выделяют регулирование по отклонению координаты и регулирование по возмущению. К этой группе могут быть отнесены также алгоритмы статической оптимизации, когда управляющее устройство автоматически осуществляет поиск такого сочетания значений технологических параметров, при котором достигается наилучшее (оптимальное) значение некоторого критерия качества функционирования объекта управления.
Если для достижения оптимального критерия качества необходимо задавать недопустимые значения параметров объекта управления, то формируются предельно допустимые алгоритмы, обеспечивающие наибольшее приближение к оптимуму.
К алгоритмам второй группы следует отнести алгоритмы отработки заданной рациональной или заданной оптимальной траектории - алгоритмы программно-следящего управления. К ним также могут быть отнесены алгоритмы отработки заданной рациональной или оптимальной дискретной последовательности смены технологических операций, образующей технологический цикл.
В отличие от перечисленных алгоритмы динамической оптимизации обеспечивают автоматический выбор оптимальной траектории или ее формирование, коррекцию в процессе отработки в зависимости от меняющихся условий таким образом, чтобы сохранить наилучшее значение критерия качества функционирования.
Наиболее современным и перспективным является оптимальное управление, которое хотя и является обычно наиболее трудно реализуемым, но зато дает наибольший технико-экономический эффект. Решение задач оптимального управления по существу стало реальным в связи с применением в системах автоматизации микропроцессоров и мини-ЭВМ.