
- •Задачи статистического и динамического анализа сау
- •Классификация объектов тепловой энергетики по параметру регулирования и их математическое описание.
- •Общий вид экспериментальных переходных кривых теплоэнергетических процессов. Обобщенная энергетическая форма уравнений динамики регулируемых объектов.
- •Понятие и основные сведения об алгоритме. Способы записи алгоритмов
- •Схемы и основные структуры алгоритмов
- •Декомпозиция алгоритмов управления и сбора информации в технологической системе.
- •Классификация процессов функционирования энергоблока аэс. Типовые алгоритмы управления
- •Типовые алгоритмы регулирования, типовые регуляторы и их динамические характеристики
- •Структурная схема унифицированного регулятора сцар.
- •Выбор схем регулирования типовых теплоэнергетических процессов и методы настройки типовых регуляторов.
- •Структура формирования технологического цикла. Общая последовательность
- •Комбинационные детерминированные модели технологического цикла.
- •Последовательностные детерминированные модели технологического
- •Комбинационные и последовательностные автоматы. Структура
- •Основные логические функции. Реализация основных логических функций на релейно-контактных схемах.
- •Основные логические элементы и их функции. Функционально полный набор логических элементов.
- •Минимизация логических функций методом матриц Карно.
- •Виды запоминающих устройств. Триггеры. Регистры.
- •Структура и принципы построения эвм.
- •Классификация эвм по сфере применения.
- •Структура и основные функции увм. Иерархическая структура асу тп.
- •Структура и функции традиционных асу тп аэс.
- •Структура и функции увс "Комплекс-Титан 2"
- •Основные недостатки традиционных асу аэс.
- •Обобщённая структура и функции информационно-управляющей
- •Человеко-машинный интерфейс (чми), реализованный в свбу асу тп аэс
- •Система регулирования мощности реактора. Режимы работы. Структура и
- •Центробежный регулятор частоты вращения турбины. Назначение,
- •Система регулирования уровня в парогенераторе.
- •Способы регулирования давления пара перед турбиной.
Основные недостатки традиционных асу аэс.
1. Важные задачи, вытекающие, в частности, из требований МАГАТЭ, либо вообще не решаются, либо решаются путем ввода дополнительных систем, расположенных вне рабочей зоны операторов-технологов. К ним, в частности, относятся системы представления параметров безопасности, внедренные зарубежными фирмами в рамках безвозмездной помощи на некоторых АЭС (Калининской, Нововоронежской и других), а также разнообразные системы информационной поддержки, вибродиагностики и другие.
2. Состояние средств АСУ TП контролируется в основном вручную. Сигнализация только некоторых наиболее важных отказов (по системам управления защитами, автоматизированной системе контроля нейтронного потока и др.) предусмотрена на блочном пульте. Непрерывный централизованный контроль оборудования АСУ ТП отсутствует.
3. Временные задержки в существующих ПBC составляют более 5 секунд, что не соответствует современным требованиям - не более 2.5 секунд от измерения до отображения.
4. Существующие ИВС не обеспечивают непрерывный режим работы в течение всего срока эксплуатации АЭС. что недопустимо для управляющих систем.
5. В традиционных АСУ ТП только часть информации сохраняется в электронной форме. Наиболее важные параметры регистрируются самописцами и операторами-технологами, в функции которых входят визуальное считывание показаний приборов и запись в журналах.
Централизация информации на традиционных блочных пультах происходит только в информационно-вычислительных системах (ИВС), примерами которых являются ТИТАН и система внутриреакторного контроля (СВРК). Управление оборудованием АЭС при помощи традиционных ИВС не предусмотрено.
Обобщённая структура и функции информационно-управляющей
вычислительной системы (ИУВС).
Для решения задачи построения СВБУ, удовлетворяющей всем необходимым требованиям, предложена новая информационная технология, реализованная в форме информационно-управляющей вычислительной системы (ИУВС), которая изображена на рис. 2. Архитектура ИУВС включает в себя две локальные вычислительные сети (ЛВС), обозначенные на рисунке как ЛВСО (основная) и ЛВСР (резервная), посредством которых элементы ИУВС обмениваются информацией между собой.
В состав ИУВС входят два сервера (СО и СР ), N рабочих станций (РС1, ..., РСN,) предназначенных для контроля и управления АЭС; М дублированных шлюзовых компьютеров (Ш1О, Ш1Р…, ШМО, ШМР),
при помощи которых ИУВС присоединяется к другим подсистемам АСУ ТП, и рабочие станции администрирования программных и технических средств (АТПС), обозначенные на рис. 2 как РСОАТПС (основная) и РСРАТПС(резервная).
Рис. 2 Обобщенная структура информационно-управляющей вычислительной системы.
Рис. Двухдисплейная рабочая станция РС-2.
1 – мониторный кожух
2 – монитор
3 – столешница
4 – МПКУ
5 – клавиатура
6 – передняя дверь
7 – тумба
8 – крышка технологического отверстия
9 – манипулятор
10 – цоколь
В предложенной информационной технологии общий алгоритм функционирования ИУВС должен осуществлять обработку четырех информационных потоков:
потока сигналов контроля состояния АЭС,
потока команд управления оборудованием АЭС,
потока сигналов диагностики ИУВС и потока команд управления ИУВС.
Поток сигналов контроля формируется в системе низовой автоматики, которая в АСУ ТП АЭС разбита на подсистемы, связанные с управлением определенными технологическими подсистемами. На рис. 2 эти подсистемы АСУ ТП пронумерованы от 1 до М.