
- •Задачи статистического и динамического анализа сау
- •Классификация объектов тепловой энергетики по параметру регулирования и их математическое описание.
- •Общий вид экспериментальных переходных кривых теплоэнергетических процессов. Обобщенная энергетическая форма уравнений динамики регулируемых объектов.
- •Понятие и основные сведения об алгоритме. Способы записи алгоритмов
- •Схемы и основные структуры алгоритмов
- •Декомпозиция алгоритмов управления и сбора информации в технологической системе.
- •Классификация процессов функционирования энергоблока аэс. Типовые алгоритмы управления
- •Типовые алгоритмы регулирования, типовые регуляторы и их динамические характеристики
- •Структурная схема унифицированного регулятора сцар.
- •Выбор схем регулирования типовых теплоэнергетических процессов и методы настройки типовых регуляторов.
- •Структура формирования технологического цикла. Общая последовательность
- •Комбинационные детерминированные модели технологического цикла.
- •Последовательностные детерминированные модели технологического
- •Комбинационные и последовательностные автоматы. Структура
- •Основные логические функции. Реализация основных логических функций на релейно-контактных схемах.
- •Основные логические элементы и их функции. Функционально полный набор логических элементов.
- •Минимизация логических функций методом матриц Карно.
- •Виды запоминающих устройств. Триггеры. Регистры.
- •Структура и принципы построения эвм.
- •Классификация эвм по сфере применения.
- •Структура и основные функции увм. Иерархическая структура асу тп.
- •Структура и функции традиционных асу тп аэс.
- •Структура и функции увс "Комплекс-Титан 2"
- •Основные недостатки традиционных асу аэс.
- •Обобщённая структура и функции информационно-управляющей
- •Человеко-машинный интерфейс (чми), реализованный в свбу асу тп аэс
- •Система регулирования мощности реактора. Режимы работы. Структура и
- •Центробежный регулятор частоты вращения турбины. Назначение,
- •Система регулирования уровня в парогенераторе.
- •Способы регулирования давления пара перед турбиной.
Структура и принципы построения эвм.
Принципы:
В основу архитектуры большинства компьютеров положены следующие общие принципы, сформулированные в 1945 г. американским ученым Джоном фон Нейманом в отчете по ЭВМ EDVAC:
принцип программного управления — из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.
принцип однородности памяти — программы и данные хранятся в одной и той же памяти. Поэтому компьютер не различает, что хранится в данной ячейке памяти — число, текст или команда.
принцип адресности – Структурно основная память состоит из перенумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка.
Структура:
ЭВМ классической архитектуры фон Неймана состоит из пяти основных функциональных блоков:
-
арифметическо-логического устройства
(АЛУ);
- устройства управления (УУ);
- запоминающего устройства (ЗУ);
- устройства ввода (УВв);
- устройства вывода (УВыв).
Рис. Структурная схема ЭВМ архитектуры фон Неймана.
______ данные и команды
--------- управляющие сигналы.
Арифметическо-логическое устройство и устройство управления составляют совместно процессор (Пр).
Процессор — основная часть электронно-вычислительной машины, непосредственно осуществляющая процесс обработки данных и управляющая ее работой.
а) Арифметическо-логическое устройство — функциональная часть процессора выполняющая арифметические и логические действия над данными и предназначенная для выполнения арифметических и логических операций над кодами чисел и команд. В него входит сумматор, ряд регистров, логические схемы и элементы управления. С помощью этих узлов можно складывать, вычитать, умножать и делить числа.
б) Запоминающее устройство предназначено для хранения введенной информации, программы вычислений и промежуточных результатов вычислений. В память ЭВМ записывается и программа решении задачи. Программа состоит из последовательности команд (операций), которые необходимо выполнить для решения определенном задачи. Команда содержит адреса чисел в ячейках памяти, а также указание, какую операцию нужно произвести над этими числами.
Команда представляется в виде цифрового набора и состоит из кодовой и адресной частей.
Кодовая часть (код операции) команды содержит условное обозначение операции, которую должна выполнять машина.
Адресная часть указывает на то, где хранится информация, над которой необходимо выполнять данную операцию, и куда направить результат. По числу адресов в команде различаются трех-, двух- и одноадресные машины. В трехадресной команде адреса / и 2 указывают местонахождение операндов (данных) в памяти машины, которые следует выбрать для исполнения операции, определяемой кодом операции. Адрес 3 указывает номер ячейки памяти, куда необходимо послать результат.
в) устройство управления, предназначенное для управления цифровой машиной при автоматической работе ее по программе или при ручном управлении с пульта.
Для ввода и вывода информации служат входные и выходные устройства. В процессе решения задачи устройство управления выбирает последовательно из памяти команду за командой для исполнения. Исполнение команды протекает в два этапа. На первом этапе производится выборка команды из запоминающего устройства, а на втором — выбранная команда исполняется. Как правило, после исполнения команды, выбранной из ячейки с номером k, исполняется очередная команда, находящаяся в ячейке с номером At+1 и т. д., до тех пор, пока не выполнятся все команды программы.