- •5. Периодическая система элементов д.И. Менделеева. Основные свойства атомов (радиус, энергия ионизации, сродство) и закономерности их изменения в группах и периодах. Периодический закон.
- •6. Понятие о валентных электронах и валентности. Определение валентности атомов s-, p-, d-, f- элементов в возбужденном и невозбужденном состоянии (на примерах) Валентность элементов II периода.
- •8. Основные характеристики химической связи (длина, энергия, валентный угол). Свойства ионной связи, свойства ковалентной связи. Виды химической связи на примере молекул NaCl, o2, nh3, khco3.
- •14. Понятие о фазах. Фазовые равновесия. Правило фаз. Описание фазовой диаграммы состояния воды.
- •15. Предмет термодинамики. Термодинамические системы, их классификация. Процессы. Понятие о функциях состояния системы Теплота и работа. Внутренняя энергия и энтальпия. Первый закон термодинамики.
- •16. Тепловой эффект реакций. Термохимические уравнения. Закон Гесса в термохимических расчетах (на примерах).
- •17. Энтропия как функция состояния системы II и III законы термодинамики. Способы определения изменения энтропии в ходе химических реакций. Изменение энтропии при фазовых переходах.
- •19. Понятие о скорости и механизмах химический реакции. Закон действия масс для гомо- и гетерогенных систем, площади поверхности раздела фаз.
- •20. Зависимость скорости химической реакции от температуры. Правило Вант-Гоффа. Энергия активации. Уравнение Аррениуса. Энергетические диаграммы хода экзо- и эндотермической реакции.
- •21. Катализ: виды, механизмы. Особенности каталитических процессов. Энергетические диаграммы каталитической и некаталитической реакции.
- •22. Химическое равновесие, его признаки. Константа равновесия для гомо- и гетерогенных реакций (на примерах). Зависимость константы равновесия от температуры.
- •23. Влияние изменения концентрации веществ, температуры, давления и объема системы, катализаторов на химическое равновесие и константу равновесия. Принцип Ле-Шателье (на примерах).
- •25. Способы выражения концентрации растворов (массовая доля, молярная доля, титр, молярная концентрация, нормальная концентрация).
- •28. Свойства истинных растворов. Способы выражения концентрации: массовая доля, молярная, молярная эквивалента, титр, моляльная, мольная доля, взаимосвязь между концентрациями.
- •29. Растворы электролитов. Механизмы электролитической диссоциации веществ с ионной и ковалентной полярной связью. Ступенчатая диссоциация.
- •30. Растворы слабых электролитов. Степень диссоциации. Константа диссоциации. Закон разбавления Оствальда.
- •32.Кислотно-основные свойства веществ с точки зрения электролитической диссоциации. Ионное произведение воды. Водородный и гидроксидный показатели. Индикаторы.
- •36. Общие закономерности электрохимических процессов. Возникновение электродного потенциала. Шкала стандартных электродных потенциалов. Типы электродов.
- •38. Гальванические элементы: условия работы. Эдс и напряжение. Способы расчета эдс. Устройство гальванического элемента Даниэля-Якоби, схема его работы, электродные процессы, токообразующая реакция.
- •43. Электролиз солей (на примере электролиза раствора соли с растворимым анодом). Схема электролиза. Последовательность электродных процессов.
- •44. Количественные закономерности электролиза (законы Фарадея, выход по току). Поляризация при электролизе (на примере электролиза водного раствора сульфата калия на никелевых электродах).
- •51. Аккумуляторы: виды, устройство, принцип работы, уравнения процессов при заряде и разрядке, достоинства и недостатки (на примере кислотных и щелочных аккумуляторов).
- •52. Химические источники тока. Марганцево-цинковый первичный элемент: устройство, уравнения процессов, достоинства и недостатки.
16. Тепловой эффект реакций. Термохимические уравнения. Закон Гесса в термохимических расчетах (на примерах).
Закон Гесса: (следствие из 1го з-на термодинамики)тепловой эффект реакций не зависит от промежуточных стадий, от пути процесса, а определяется только начальным и конечным состоянием системы. Для расчетов используется следствие из з-на Гесса Тепловой эффект реакции равен разности между суммой энтальпий продуктов р-й предварительно умноженной на соответственные коэффициенты и суммой энтальпий исходных веществ с учетом вклада каждого стехиометрического коэффициента. ΔH°Х.Р.=∑υjΔH°298(прод)- ∑υiΔH°298(исх.в-в) Величина ΔH позволяет судить о прочности образующихся соединений. Чем меньше ΔH тем выше прочность образующихся соединений Энтальпия образования простого в-ва равна 0. Важным положением из з-на Гесса и его следствий является Закон Лавуазье-Лапласса : Тепловой эффект реакции разложения точно равен и противоположен по знаку температурному эффекту реакции образования.
17. Энтропия как функция состояния системы II и III законы термодинамики. Способы определения изменения энтропии в ходе химических реакций. Изменение энтропии при фазовых переходах.
2е начало термодинамики: позволяет предвидеть направление химических процессов в изолированной системе, энтропия в ней растет самопроизвольного процесса растет. Клаузис: теплота не может сама собою перейти от холодного тела к теплому. Больцман: энтропия изолированной системы стремится к максимусу. 3е начало термодинамики: энтропия идеального кристалла при Т=0К равна 0. При понижении температуры любая система переходит в состояние с большей внутренней упорядоченностью. Энтропия при этом уменьшается. При приближении к абсолютному нулю температуры энтропия стремится к нулю. Наименьшим значением энтропии обладают твердые кристаллические вещества. Изменение энтропии при фазовых переходах: Следствие из з-на Гесса для энтропии: ΔS°Х.Р.=∑υjS°298(прод)- ∑υiS°298(исх.в-в) У простых в-в энтропия не равна 0.
18. Определение направления и предела самопроизвольного протекания реакций. Энтальпийный и энтропийный факторы. Свободная энергия Гиббса. Температура равновесия. Связь энергии Гиббса с константой равновесия.
Энергия Гиббса: объединенный закон ΔG = ΔH°Х.Р.*103 –ТΔS°Х.Р., ΔH°Х.Р. – энтальпийный фактор, ТΔS°Х.Р. – энтропийный фактор. При ΔG =0 можно рассчитать температуру равновения TРАВН= ΔH°Х.Р.*103/ ΔS°Х.Р. По следствию из закона Гесса: ΔG°Х.Р.=∑υjΔG°298(прод)- ∑υiΔG°298(исх.в-в) ΔG=-RT lnKРАВН. Если использовать R=8,31 и переход от натурального логарифма к десятичному, то KРАВН=10-ΔG / 19,113 Т Для определения направление самопроизвольного протекания окислительно-восстановительной реакции необходимо вычислить ЭДС реакции ЭДС меньше нуля, то реакция будет протекать в обратном направлени Энтальпийный и энтропийный факторы. Процессы могут протекать самопроизвольно (ΔG<0), если они сопровождаются уменьшением энтальпии (ΔH<0) и увеличением энтропии системы (ΔS>0). Если же энтальпия системы увеличивается (ΔH>0), а энтропия уменьшается (ΔS<0), то такой процесс протекать не может (ΔG>0). При иных знаках ΔS и ΔН принципиальная возможность протекания процесса определяется соотношением энтальпийного (ΔH) и энтропийного (ТΔS) факторов. // Если ΔН>0 и ΔS>0, т.е. энтальпийная составляющая противодействует, а энтропийная благоприятствует протеканию процесса, то реакция может протекать самопроизвольно за счет энтропийной составляющей, при условии, что |ΔH|<|TΔS|. //Если, энтальпийная составляющая благоприятствует, а энтропийная противодействует протеканию процесса, то реакция может протекать самопроизвольно за счет энтальпийной составляющей, при условии, что |ΔH|>|TΔS|.
Влияние температуры на направление реакции. Изменение знака энергии Гиббса произойдет при T = H/S Очевидно, что смена знака энергии Гиббса с изменением температуры возможна только в двух случаях: 1) ΔН>0 и ΔS>0 и 2) ΔН<0 и ΔS<0.
