
- •1. Сущность жизни и уровни организации живого.
- •2. Основные положения клеточной теории.
- •3. Особенности строения прокариот. Роль бактерий в медецине.
- •4. Эукариоты. Цитоплазма, органоиды, включения, их функции.
- •5. Наружная клеточная мембрана, её функция.
- •6. Активный и пассивный транспорт через клеточную мембрану. Осмос. Использование растворов в медицине.
- •7. Ядро, структура, функция. Типы хромосом. Кариотип.
- •8. Фагоцитоз и его роль в иммунитете
- •9. Химический состав клетки. Вода, роль в организме.
- •10. Неорганические вещества клетки. Роль микроэлементов.
- •11. Органические вещества клетки. Классификация углеводов, их роль в организме.
- •12. Органические вещества клетки. Липиды, их функции.
- •13. Нуклеиновые кислоты. Строение, структура и функции днк.
- •14. Нуклеиновые кислоты. Строение и функции рнк
- •15. Генетический код. Матричный синтез. Редупликация днк
- •16. Синтез информационной рнк и её роль в биосинтезе белка.
- •17. Белки, строение, структура, их роль в организме.
- •18. Общая характеристика обмена веществ в организме. Витамины.
- •19. Энергетический обмен в клетке. Атф.
- •20. Автотрофы. Фотосинтез. Космическая роль растений. Круговорот энергии в биосфере.
- •21. Биосинтез белка. Транскрипция. Трансляция.
- •22. Жизненный цикл клетки. Интерфаза. Митоз. Биологическое значение митоза. Патологический митоз – биологическая основа образования опухолей.
- •23.Раздрожимость, возбудимость и движения клеток. Общая характеристика.
- •24. Значение цитологии для медицины.
- •25. Размножение, его виды. Способы бесполого размножения. Виды вегетативного размножения, использование в народном хозяйстве и медицине.
- •26. Половое размножения, его биологическое значение. Строение половых клеток.
- •27. Образование половых клеток: сперматогенез и овогенез.
- •28. Гаметогенез. Мейоз. Понятия конъюгация и кроссинговер.
- •29. Онтогенез. Эмбриональное развитие, критические периоды в развитии человека.
- •30. Зародышевые оболочки их роль.
- •31. Органогенез. Зародышевые листки их функции.
- •32. Рост организма в онтогенезе, влияние внешних и внутренних факторов.
- •33. Постэмбриональное развитие. Прямое и непрямое развитие.
- •34. Старение и смерть как закономерный этап онтогенеза. Регенерация.
- •35. Моногибридное скрещивание. 1-й и 2-й законы г. Менделя. Закономерности наследования аутосомных альтернативных признаков.
- •36.Цитологические основы наследования аутосомных альтернативных признаков; объяснить на примере решения задач.
- •37. Дигибридное скрещивание. 3-й закон г. Менделя
- •38. Гипотеза чистоты гамет. Анализирующие скрещивание. Уметь объяснить правила образования гамет и расщепления признаков на примере решения задач.
- •39. Хромосомная теория наследственности т. Моргана.
- •40. Генетика пола, наследование признаков, сцепленных с полом.
- •41. Цитологические основы наследования генов гемофилии и дальтонизма, объяснить на примере решения задач.
- •42. Изменчивость. Формы изменчивости. Модификационая изменчивость, норма реакции.
- •43. Мутационная изменчивость. Мутагенные факторы.
- •44. Происхождение жизни на Земле. Опыты л. Пастера. Теория а. И. Опарина.
- •45. Основные положения эволюционной теории ч. Дарвина
- •46. Определение вида по Дарвину. Критерии вида. Два пути видообразования.
- •47. Борьба за существование её формы с примерами
- •48. Современная эволюционная теория. Макро и микро эволюция.
- •49. Антропогенез. Гипотеза происхождения человека от млекопитающих.
- •64. Экология. Биогеоценоз. Цепи питания с примерами.
- •65. Формы взаимоотнношений между организмами в биоценозе
- •66. Экология. Абиотические и биотические факторы. Действие экологических факторов среды на организм человека.
- •67. Деятельность человека как экологический фактор
38. Гипотеза чистоты гамет. Анализирующие скрещивание. Уметь объяснить правила образования гамет и расщепления признаков на примере решения задач.
Гипотеза (с примером задачи).
Для объяснения закономерностей проявления и расщепления признаков у гибридов второго поколения и в возвратных скрещиваниях Мендель предложил гипотезу чистоты гамет, согласно которой, гаметы каждого из родителей несут только по одному из наследуемых факторов. Гибриды первого поколения (Аа) дают два типа гамет, в равном соотношении содержащих доминантный (А) и рецессивный факторы (а). Гибридные растения выглядят одинаково, поскольку действует закон доминирования, или единообразия.
Наследственные детерминанты рецессивных признаков в гибридном организме Аа не исчезают и не сливаются, а разъединяются с доминантными факторами в очередном цикле образования гамет.
Для упрощения анализа ожидаемых результатов в F2 используют так называемую решетку Пеннета — таблицу, первые строки и столбцы которой соответствуют различным типам женских и мужских гамет. В каждой из четырех клеток записываются генотипы особей F2, образующиеся при слиянии этих гамет.
Г. Мендель не связывал наследственные факторы и процесс их распределения при образовании гамет с какими-либо конкретными материальными структурами клетки и процессами клеточного деления. Последующее развитие генетики показало, что в гипотезе чистоты гамет задолго до создания хромосомной теории наследственности было предугадано существование генов и механизма мейоза и оплодотворения.
Во время мейоза у гибридного растения F1 (Аа) разные пары хромосом расходятся в дочерние клетки независимо друг от друга, и поэтому при случайном соединении гамет во время оплодотворения образуется три типа зигот, соответствующих трем генотипам особей: АА,Аа и аа. На фенотипическом уровне (фенотип — признаки, проявившиеся у особи) проявятся два признака, определяемые генами А и а, в соотношении 3:1. Соответственно, в полигибридном скрещивании число классов генотипов можно определить по формуле 3, а фенотипов — 2", где я — число пар аллелей, по которым различаются родительские формы.
Убедительное доказательство правильности идеи о расхождении доминантного и рецессивного аллелей у гетерозигот было получено при помощи так называемого тетрадного анализа, основанного на том, что из материнской клетки образуются четыре гаплоидные гаметы. Этот феномен наблюдается у мхов, дрожжей, дающих на одной из стадий жизненного цикла путем деления материнской клетки тетраду, содержащую 4 гаплоидные споры. При тетрадном анализе индивидуально изучаются все 4 особи, развившиеся из отдельных спор. Тетрады гетерозиготных особей Аа всегда содержат 2 споры, которые дают потомков с признаками А и 2 споры, из которых развиваются особи с признаками а.
Анализирующее скрещивание — скрещивание гибридной особи с особью, гомозиготной по рецессивным аллелям, то есть "анализатором". Смысл анализирующего скрещивания заключается в том, что потомки от анализирующего скрещивания обязательно несут один рецессивный аллель от "анализатора", на фоне которого должны проявиться аллели, полученные от анализируемого организма. Для анализирующего скрещивания (исключая случаи взаимодействия генов) характерно совпадение расщепления по фенотипу с расщеплением по генотипу среди потомков. Таким образом, анализирующее скрещивание позволяет определить генотип и соотношение гамет разного типа, образуемых анализируемой особью.
Мендель, проводя эксперименты по анализирующему скрещиванию растений гороха с белыми цветками (аа) и пурпурных гетерозигот (Аа), получил результат 81 к 85, что почти равно соотношению 1:1.Он определил, что в результате скрещивания и образования гетерозиготы, аллели не смешиваются друг с другом и в дальнейшем проявляются в "чистом виде". В дальнейшем Бэтсон на этой основе сформулировал правило чистоты гамет.