
- •1.Элементы кинематики. Равномерное движение. Путь, перемещение, траектория.
- •2.Закон ома для участка цени. Сила тока. Сопротивление.
- •1.Путь, перемещение, траектория. Закон сложения скоростей.
- •2. Закон ома для цени с эдс. Внутреннее сопротивление, эдс-источника.
- •1.Скорость и ускорение неравномерном движении. Закон сложения скоростей.
- •2.Электростатика. Строение атома, электризация тел.
- •1.Основная задача динамики. Понятие силы массы. Законы Ньютона.
- •2.Закон Кулона, закон сохранения электрического заряда.
- •1.Вращательное движение тел.
- •2.Элекрическое поле. Напряженность. Силовые линии электрического поля.
- •1.Свободное падение тел. Сила тяжести. Вес невесомость.
- •2.Электрическое напряжение, электрический потенциал.
- •1.Сила трения. Сила упругости.
- •2.Электроемкость , конденсаторы, энергия конденсаторов.
- •1.Сила упругости. Закон Гука.
- •2.Проводники и диэлектрики.
- •1.Работа силы, мощность, механическая энергия. Закон сохранения энергии.
- •2.Электрический ток в электролитах. Закон Фарадея.
- •1.Импульс тела. Импульс силы. Закон сохранения импульса. Реактивное движение.
- •2.Работа и мощность тока. Закон Джоуля-Ленца.
- •1.Основные положения мкт, силы молекулярного взаимодействия, молярная масса.
- •2.Последовательное и параллельное соединение.
- •1.Давление, барометр, манометр.
- •2. Электрический ток в полупроводниках.
- •1.Идеальный газ основное уравнение мкт.
- •2.Магнитное поле тока. Сила Ампера. Вектор магнитной индукции.
- •1.Температура. Уравнение состояния.
- •1.Изопроцессы в газах.
- •2.Гальванометр, амперметр, вольтметр.
- •1.Внутренняя энергия тела. Работа газа.
- •2.Явление электромагнитной индукции. Магнитный поток. Правило ленца.
- •1.Изменение внутренней энергии в процессе теплопередачи. Кипение.
- •2.Закон электромагнитной индукции. Самоиндукция. Электромагнитное поле.
- •1.Первый и второй закон термодинамики.
- •2. Магнитный поток. Закон электромагнитной индукции.
- •1.Первый закон термодинамики для изопрацессов.
- •2.Радиоактивность. Опыт Резерфорда.
- •1.Теплота сгорания топлива, кпд.
- •2.Переменный электрический ток. Активное, ёмкостное,индуктивное сопротивление.
- •1.Испарение и конденсация.
- •2.Электромагнитные колебания. Превращение энергии в колебательном контуре.
- •1.Плавление и кристаллизация.
- •2.Электромагнитные колебания. Колебательный контур.
- •1.Механические колебания. Свободные и вынужденные колебания. Математический маятник.
- •Амплитуда — максимальное отклонение колеблющейся величины от некоторого усреднённого её значения для системы, (м)
- •Период — промежуток времени, через который повторяются какие-либо показатели состояния системы (система совершает одно полное колебание), (сек)
- •Частота — число колебаний в единицу времени,
- •2.Переменный электрический ток. Действующее значение силы тока и напряжения.
- •1.Гармонические колебания. Амплитуда колебаний. Зависимость периода свободных колебаний от свойств системы.
- •2.Пребразование и потребление электрической энергии (устройство генератора). Электростанции.
- •2.Строение атома. Правила смещения
- •1.Преврашение энергии при гармонических колебаниях. Резонанс.
- •2.Теории о представлении света. Скорость света.
- •1. Механические, звуковые волны.
- •2.Простейший радио приёмник.
- •1.Основная задача динамики. Понятие силы массы. Законы Ньютона.
- •2.Принцип работы радиосвязи, телевидения.
- •1.Изопроцессы в газах.
- •2.Геометрическая оптика. Законы отражения и преломления. Полное отражение света.
- •1.Геометрическая оптика. Линзы.
- •2.Преобразование электрической энергии. Устройство трансформатора.
- •1.Магнитное поле тока. Сила ампера. Вектор магнитной индукции.
- •2.Электромагнитная волна. Открытый колебательный контур. Свойства электромагнитной волны.
- •2.Дисперсия
- •1.Импульс тела. Импульс силы. Закон сохранения импульса. Реактивное движение.
- •2.Работа и мощность тока. Закон Джоуля-Ленца.
- •2.Интерференция. Дифракция. Поляризация.
- •1.Фотоэффект. Законы фотоэффекта. Красная граница фотоэффекта.
- •2.Закон ома для цепи с эдс. Внутреннее сопротивление, эдс – источника.
- •1.Скорость и ускорение неравномерном движении. Закон сложения скоростей.
1.Основные положения мкт, силы молекулярного взаимодействия, молярная масса.
Молекулярно-кинетическая теория (сокращённо МКТ) — теория XIX века, рассматривавшая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений:
все тела состоят из частиц, размером которых можно пренебречь: атомов, молекул и ионов;
частицы находятся в непрерывном хаотическом движении (тепловом);
частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.
Основными доказательствами этих положений считались:
Диффузия
Броуновское движение
Изменение агрегатных состояний вещества
В современной (теоретической) физике термин молекулярно-кинетическая теория уже не используется, хотя он встречается в учебниках по курсу общей физики.
Межмолекулярное взаимодействие — это взаимодействие между электрически нейтральными молекулами или атомами. Силы межмолекулярного взаимодействия впервые принял во внимание Я. Д. Ван-дер-Ваальс (1873) для объяснения свойств реальных газов и жидкостей.
Моля́рная ма́сса вещества — масса одного моль вещества. Для отдельных химических элементов молярной массой является масса одного моля отдельных атомов этого элемента. В этом случае молярная масса элемента, выраженная в г/моль, численно совпадает с массой атома элемента, выраженной в а.е.м. (атомная единица массы). Однако надо четко представлять разницу между молярной массой и молекулярной массой, понимая, что они равны лишь численно и отличаются по размерности.
Молярные массы сложных молекул можно определить, суммируя молярные массы входящих в них элементов. Например, молярная масса воды (H2O) есть MH2O = 2 MH +MO = 2·1+16 = 18 (г/моль).
2.Последовательное и параллельное соединение.
Последовательное и параллельное соединение в электротехнике — два основных способа соединения элементов электрической цепи. При последовательном соединении все элементы связаны друг с другом так, что включающий их участок цепи не имеет ни одного узла. При параллельном соединении все входящие в цепь элементы объединены двумя узлами и не имеют связей с другими узлами.
При последовательном соединении проводников сила тока во всех проводниках одинакова.
При параллельном соединении падение напряжения между двумя узлами, объединяющими элементы цепи, одинаково для всех элементов. При этом величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.
-
Последовательное соединение проводников.
-Параллельное
соединение проводников.
Билет№12
1.Давление, барометр, манометр.
Давле́ние (P) — физическая величина, характеризующая состояние сплошной среды и численно равная силе , действующей на единицу площади поверхности перпендикулярно этой поверхности. В простейшем случае изотропной равновесной неподвижной среды давление не зависит от ориентации поверхности. В данной точке давление определяется как отношение нормальной составляющей силы Fn, действующей на малый элемент поверхности, к его площади:
Баро́метр — прибор для измерения атмосферного давления. Был изобретён итальянским учёным Эванджелиста Торричелли.
Устройство
В жидкостных барометрах давление измеряется высотой столба жидкости (ртути) в трубке запаянной сверху, а нижним концом опущенной в сосуд с жидкостью (атмосферное давление уравновешивается весом столба жидкости). Ртутные барометры — наиболее точные, используются на метеостанциях.
В быту обычно используются механические барометры (Анероид). В анероиде жидкости нет (греч. «анероид» – «безводный»). Он показывает атмосферное давление, действующее на гофрированную тонкостенную металлическую коробку, в которой создано разрежение. При понижении атмосферного давления коробка слегка расширяется, а при повышении – сжимается и воздействует на прикрепленную к ней пружину. На практике часто используется несколько (до десяти) анероидных коробок, соединенных последовательно, и имеется рычажная передаточная система, которая поворачивает стрелку, движущуюся по круговой шкале, проградуированной по ртутному барометру.
Манометр — прибор, измеряющий давление жидкости или газа. Принцип действия манометра основан на уравновешивании измеряемого давления силой упругой деформации трубчатой пружины или более чувствительной двухпластинчатой мембраны, один конец которой запаян в держатель, а другой через тягу связан с трубко-секторным механизмом, преобразующим линейное перемещение упругого чувствительного элемента в круговое движение показывающей стрелки.