
- •1.Элементы кинематики. Равномерное движение. Путь, перемещение, траектория.
- •2.Закон ома для участка цени. Сила тока. Сопротивление.
- •1.Путь, перемещение, траектория. Закон сложения скоростей.
- •2. Закон ома для цени с эдс. Внутреннее сопротивление, эдс-источника.
- •1.Скорость и ускорение неравномерном движении. Закон сложения скоростей.
- •2.Электростатика. Строение атома, электризация тел.
- •1.Основная задача динамики. Понятие силы массы. Законы Ньютона.
- •2.Закон Кулона, закон сохранения электрического заряда.
- •1.Вращательное движение тел.
- •2.Элекрическое поле. Напряженность. Силовые линии электрического поля.
- •1.Свободное падение тел. Сила тяжести. Вес невесомость.
- •2.Электрическое напряжение, электрический потенциал.
- •1.Сила трения. Сила упругости.
- •2.Электроемкость , конденсаторы, энергия конденсаторов.
- •1.Сила упругости. Закон Гука.
- •2.Проводники и диэлектрики.
- •1.Работа силы, мощность, механическая энергия. Закон сохранения энергии.
- •2.Электрический ток в электролитах. Закон Фарадея.
- •1.Импульс тела. Импульс силы. Закон сохранения импульса. Реактивное движение.
- •2.Работа и мощность тока. Закон Джоуля-Ленца.
- •1.Основные положения мкт, силы молекулярного взаимодействия, молярная масса.
- •2.Последовательное и параллельное соединение.
- •1.Давление, барометр, манометр.
- •2. Электрический ток в полупроводниках.
- •1.Идеальный газ основное уравнение мкт.
- •2.Магнитное поле тока. Сила Ампера. Вектор магнитной индукции.
- •1.Температура. Уравнение состояния.
- •1.Изопроцессы в газах.
- •2.Гальванометр, амперметр, вольтметр.
- •1.Внутренняя энергия тела. Работа газа.
- •2.Явление электромагнитной индукции. Магнитный поток. Правило ленца.
- •1.Изменение внутренней энергии в процессе теплопередачи. Кипение.
- •2.Закон электромагнитной индукции. Самоиндукция. Электромагнитное поле.
- •1.Первый и второй закон термодинамики.
- •2. Магнитный поток. Закон электромагнитной индукции.
- •1.Первый закон термодинамики для изопрацессов.
- •2.Радиоактивность. Опыт Резерфорда.
- •1.Теплота сгорания топлива, кпд.
- •2.Переменный электрический ток. Активное, ёмкостное,индуктивное сопротивление.
- •1.Испарение и конденсация.
- •2.Электромагнитные колебания. Превращение энергии в колебательном контуре.
- •1.Плавление и кристаллизация.
- •2.Электромагнитные колебания. Колебательный контур.
- •1.Механические колебания. Свободные и вынужденные колебания. Математический маятник.
- •Амплитуда — максимальное отклонение колеблющейся величины от некоторого усреднённого её значения для системы, (м)
- •Период — промежуток времени, через который повторяются какие-либо показатели состояния системы (система совершает одно полное колебание), (сек)
- •Частота — число колебаний в единицу времени,
- •2.Переменный электрический ток. Действующее значение силы тока и напряжения.
- •1.Гармонические колебания. Амплитуда колебаний. Зависимость периода свободных колебаний от свойств системы.
- •2.Пребразование и потребление электрической энергии (устройство генератора). Электростанции.
- •2.Строение атома. Правила смещения
- •1.Преврашение энергии при гармонических колебаниях. Резонанс.
- •2.Теории о представлении света. Скорость света.
- •1. Механические, звуковые волны.
- •2.Простейший радио приёмник.
- •1.Основная задача динамики. Понятие силы массы. Законы Ньютона.
- •2.Принцип работы радиосвязи, телевидения.
- •1.Изопроцессы в газах.
- •2.Геометрическая оптика. Законы отражения и преломления. Полное отражение света.
- •1.Геометрическая оптика. Линзы.
- •2.Преобразование электрической энергии. Устройство трансформатора.
- •1.Магнитное поле тока. Сила ампера. Вектор магнитной индукции.
- •2.Электромагнитная волна. Открытый колебательный контур. Свойства электромагнитной волны.
- •2.Дисперсия
- •1.Импульс тела. Импульс силы. Закон сохранения импульса. Реактивное движение.
- •2.Работа и мощность тока. Закон Джоуля-Ленца.
- •2.Интерференция. Дифракция. Поляризация.
- •1.Фотоэффект. Законы фотоэффекта. Красная граница фотоэффекта.
- •2.Закон ома для цепи с эдс. Внутреннее сопротивление, эдс – источника.
- •1.Скорость и ускорение неравномерном движении. Закон сложения скоростей.
2.Радиоактивность. Опыт Резерфорда.
Радиоакти́вность (от лат. radio — «излучаю», radius — «луч» и activus — «действенный») — свойство атомных ядер самопроизвольно (спонтанно) изменять свой состав (заряд Z, массовое число A) путём испускания элементарных частиц или ядерных фрагментов[1]. Соответствующее явление называется радиоакти́вным распа́дом. Радиоактивностью называют также свойство вещества, содержащего радиоактивные ядра.
Установлено, что радиоактивны все химические элементы с порядковым номером, большим 82 (то есть начиная с висмута), и многие более лёгкие элементы (прометий и технеций не имеют стабильных изотопов, а у некоторых элементов, таких как индий, калий или кальций, часть природных изотопов стабильны, другие же радиоактивны).
Естественная радиоактивность — самопроизвольный распад ядер элементов, встречающихся в природе.
Искусственная радиоактивность — самопроизвольный распад ядер элементов, полученных искусственным путем через соответствующие ядерные реакции.
α-распадом называют самопроизвольный распад атомного ядра на дочернее ядро и α-частицу (ядро атома 4He).
α-распад, как правило, происходит в тяжёлых ядрах с массовым числом А≥140 (хотя есть несколько исключений). Внутри тяжёлых ядер за счёт свойства насыщения ядерных сил образуются обособленные α-частицы, состоящие из двух протонов и двух нейтронов. Образовавшаяся α-частица подвержена большему действию кулоновских сил отталкивания от протонов ядра, чем отдельные протоны. Одновременно α-частица испытывает меньшее ядерное притяжение к нуклонам ядра, чем остальные нуклоны. Образовавшаяся альфа-частица на границе ядра отражается от потенциального барьера внутрь, однако с некоторой вероятностью она может преодолеть его (см. Туннельный эффект) и вылететь наружу. С уменьшением энергии альфа-частицы проницаемость потенциального барьера экспоненциально уменьшается, поэтому время жизни ядер с меньшей доступной энергией альфа-распада при прочих равных условиях больше.
Беккерель доказал, что β-лучи являются потоком электронов. β-распад — это проявление слабого взаимодействия.
β-распад (точнее, бета-минус-распад, β − -распад) — это радиоактивный распад, сопровождающийся испусканием из ядра электрона и антинейтрино.
β-распад
является внутринуклонным процессом.
Он происходит вследствие превращения
одного из d-кварков в одном из нейтронов
ядра в u-кварк; при этом происходит
превращение нейтрона в протон с
испусканием электрона и антинейтрино:
Опыт Резерфорда
Изучая рассеяние альфа-частиц при прохождении через золотую фольгу, Резерфорд пришел к выводу, что весь положительный заряд атомов сосредоточен в их центре в очень массивном и компактном ядре. А отрицательно заряженные частицы (электроны) обращаются вокруг этого ядра. Эта модель коренным образом отличалась от широко распространенной в то время модели атома Томсона, в которой положительный заряд равномерно заполнял весь объем атома, а электроны были вкраплены в него. Несколько позже модель Резерфорда получила название планетарной модели атома (она действительно похожа на Солнечную систему: тяжелое ядро - Солнце, а обращающиеся вокруг него электроны - планеты).
В 1912 г. Э.Резерфорд и его сотрудники поставили опыт по рассеянию альфа-частиц в веществе.
Альфа-частицы испускались источником, помещенным внутри свинцовой полости. Все альфа-частицы, кроме движущихся вдоль канала, поглощались свинцом. Узкий пучок альфа-частиц попадал на фольгу из золота перпендикулярно к ее поверхности; альфа-частицы, прошедшие сквозь фольгу и рассеянные ею, вызывали вспышки (сцинтилляции) на экране, покрытым веществом, способным светиться при попадании частиц. В пространстве между фольгой и экраном обеспечивается достаточный вакуум, чтобы не происходило рассеяние альфа-частиц в воздухе. Конструкция прибора позволила наблюдать альфа-частицы, рассеянные под углом до 150 градусов.
Билет№20