- •1)Классификация каналов электросвязи
- •2) Линейные и нелинейные модели каналов.
- •3)Классификация каналов связи
- •4) Понятие непрерывного, дискретного и непрерывно-дискретного канала связи.
- •5) Детерминированные и случайные каналы.
- •6. Преобразование энергетических характеристик детерминированных сигналов.
- •4.3.7. Аддитивные помехи в канале
- •8.Идеальный непрерывный канал без помех. Канал с аддитивным гауссовским шумом
- •9.Непрерывный канал. Канал с неопределённой фазой сигнала и аддитивным шумом. Однолучевой канал с замираниями.
- •10.Канал с межсимвольной интерференцией и аддитивным шумом. Чем определяется память канала с мси?
- •11.Дискретный симметричный канал без памяти. Канал со стиранием.
- •12.Дискретные каналы с памятью.
- •13.Модели непрерывных каналов, заданные дифференциальными уравнениями.
- •Прием сигналов.
- •1.Задачи синтеза оптимальных демодуляторов. Критерии качества и правила приема дискретных сообщений.
- •2.Оптимальные алгоритмы приема при полностью известных сигналах(когерентный прием).
- •3.Оптимальный приемник с согласованным фильтром
- •4.Помехоустойчивость оптимального когерентного приема.
- •5.Какое правило приема преимущественно применяют в технике связи и почему?
- •6.Что понимают под согласованным фильтром? в какой момент времени на выходе сф обеспечивается максимальное отношение сигнал / шум и чему оно равно?
- •7.Какие основные блоки содержит корреляционная схема оптимального когерентного приема в канале с аддитивным стационарным бгш?
- •8 Обработка сигналов в каналах с межсимвольной интерференцией
- •9 Приём сигналов с неопределённой фазой (некогерентный приём)
- •11. Прием дискретных сообщений в каналах с сосредоточенными по спектру и импульсными помехами
- •7.4.1. Общая характеристика сосредоточенных по спектру и импульсных помех
- •13 В чем смысл разнесенного приема сигналов и какие виды разнесения вы знаете?
- •10 Приём дискретных сообщений в условиях флуктуациифаз и амплитуд сигналов
- •Кодирование
- •1)Классификация методов кодирования. Конструктивные методы кодирования источников сообщений.
- •2) Вероятность ошибки оптимального декодирования для кодов с фиксированной длиной блоков (экспоненты вероятностей ошибок)
- •3)Коды с гарантированным обнаружением и исправлением ошибок
- •4)Линейные двоичные коды для обнаружения и исправления ошибок. Важные подклассы линейных двоичных кодов.
- •5)Какие классы кодов (по назначению) вы знаете? в чем заключается метод укрупнения алфавита?
- •6. Конструктивные алгоритмы исправления ошибок линейными кодами.
- •7.Пояснить различие между равномерным и неравномерным кодированием. Дайте определение префиксного кода.
- •8.Пояснить различие между линейным и нелинейным кодом. Дайте определение систематического кода.
- •9.Что такое избыточность помехоустойчивого кода? Что такое относительная скорость помехоустойчивого кода?
- •10.Что такое расстояние по Хэммингу и ее кодовой комбинации?
- •Что такое минимальное расстояние кода? Как упрощается процедура отыскания минимального расстояния для линейного кода?
- •Как связаны минимальное расстояние кода, число исправляемых и число обнаруживаемых ошибок?
- •Что такое декодирование по максимуму правдоподобия и по минимуму Хемминговского расстояния? Когда эти правила совпадают?
- •14.В чем состоит табличным метод кодирования, декодирования с обнаружением ошибок, декодирования с исправлением ошибок? Почему табличные процедуры не пригодны для длинных кодов?
- •15. Итеративные и каскадные коды
- •16. Системы с обратной связью
- •Система с обратной связью может достаточно полно характеризоваться двумя величинами:
- •Помимо описанных здесь трёх основных протоколов функционирования системы рос существует также много других вариантов1).
- •17. Как использовать помехоустойчивый код в системах с обратной связью?
- •Критерии помехоустойчивости приема непрерывных сообщений.
- •Оптимальная оценка отдельных параметров сигнала.
- •3. Оптимальная демодуляция непрерывных сигналов.
- •§ 8.2 Задачи оптимальной оценки одного параметра.
5.Какое правило приема преимущественно применяют в технике связи и почему?
В технике связи преимущественно применяют правило максимального правдоподобия. В том случае, когда все символы передаются равновероятно, правило максимального правдоподобия реализует критерий идеального наблюдателя. Однако очень часто это правило решения применяют и при неизвестных или известных, но не одинаковых априорных вероятностях символов. Конечно, оно не обеспечивает в этих случаях максимума вероятности правильного приёма. Изменив решающую схему на схему, построенную по правилу максимальной апостериорной вероятности, реализующему критерий идеального наблюдателя, можно было бы уменьшить вероятность ошибок. При этом, очевидно, пришлось бы сократить области приёма маловероятных и расширить области высоковероятных символов. В результате редко передаваемые символы принимались бы менее надёжно, нежели часто передаваемые. Но редкие символы несут больше информации, чем частые. Поэтому переход от правила максимального правдоподобия к правилу максимальной апостериорной вероятности, хотя и уменьшает безусловную вероятность ошибки, может привести к увеличению потери информации при демодуляции.
6.Что понимают под согласованным фильтром? в какой момент времени на выходе сф обеспечивается максимальное отношение сигнал / шум и чему оно равно?
Согласованным фильтром для сигнала s(t) называют линейный пассивный фильтр с постоянными параметрами и ИХ (импульсной характеристикой)
,
где a,
-
постоянные.
Согласованный фильтр это фильтр, который согласуется или по отношению сигнал шум по или по другим параметрам
Согласованный фильтр обеспечивает при флуктуационной помехе в канале типа « белого шума « в момент окончания сигнала t0 = Тс на своём выходе максимально возможное отношение пиковой мощности сигнала к мощности помехи. Выигрыш в отношении сигнал / шум на выходе СФ по сравнению со входом равняется базе сигнала (В = 2·Fс·Тс), т. е.
Где Tc = N*T – длительность сигнала (N- число элементов в дискретной последовательности);
Fc
=
– ширина спектра сигнала
Таким образом, выигрыш q = (hвых)2 / (hвх)2, обеспечиваемый СФ при приёме дискретных последовательностей, составляет N раз. Следовательно, путём увеличения длины дискретных последовательностей, отображающих символы сообщений “1” и“0”, можно обеспечить значительное повышение отношения сигнал / шум на входе решающей схемы приёмника и, соответственно, повышение помехоустойчивости (достоверности) передачи дискретных сообщений. Очевидно, что это будет приводить к снижению скорости передачи сообщений, то есть реализуется принцип обмена скорости передачи дискретных сообщений на помехоустойчивость их приёма путём увеличения энергии элемента сигнала Eс = PсT.
7.Какие основные блоки содержит корреляционная схема оптимального когерентного приема в канале с аддитивным стационарным бгш?
Рисунок 3 - Корреляционная схема оптимального когерентного приема в канале с аддитивным стационарным БГШ
