
- •Вопросы к экзамену по нейрофизиологии
- •Определение нейрофизиологии центральной нервной системы, её место в системе других естественных и психологических наук.
- •Методы нейрофизиологии.
- •Принципы организации деятельности центральной нервной системы.
- •Классификация нейронов; жесткие и гибкие связи в центральной нервной системе; иерхарические, локальные и дивергентные сети.
- •Нейронный ансамбль, нервный центр, функциональная система.
- •Структура мембран нервных клеток.
- •Характеристика ионных каналов мембраны, каналы входящего тока, селективность ионных каналов.
- •Воротный механизм мембраны; ионный механизм мембранного потенциала.
- •Механизм передачи информации в синапсах.
- •Ионотропный и метаботропный механизмы постсинаптической мембраны.
- •Медиаторные вещества, происхождение и химическая природа нейромедиаторов.
- •Отдельные медиаторные системы, их локализация в структурах мозга и функции в регуляции поведенческих реакций.
- •Постсинаптические процессы: возбуждение, ионные механизмы генерации возбуждающих постсинаптических потенциалов.
- •Генерация потенциалов действия под влиянием впсп.
- •Ионные механизмы генерации тормозных постсинаптических потенциалов.
- •Пейсмекерный потенциал и авторитмическая активность, его роль в организации поведения и функций организма.
- •Механизм проведения нервных импульсов.
- •Механизмы торможения: постсинаптическое и пресинаптическое.
- •Виды торможения нейронной активности: центральное, возвратное, латеральное.
- •Рефлекторная дуга. Особенности строения рефлекторных дуг соматических и вегетативных рефлексов.
- •Классификация безусловных рефлексов (и.П. Павлова, ю. Конорского, п.В. Симонова)
- •Иерархия моторных систем; программы спинного мозга и ствола; планирование будущих действий вторичной моторной корой; первичная моторная кора, ее нисходящие пути.
- •Функция мозжечка в организации движений, взаимодействие нейронов мозжечка.
- •Взаимодействие базальных ганглиев и их участие в организации движений.
- •Регуляция форм поведения, определяемых биологическими мотивациями.
- •Роль гипоталамуса, лимбической системы и миндалин в мотивациях.
- •Механизмы пищевого, питьевого и полового поведения.
Классификация нейронов; жесткие и гибкие связи в центральной нервной системе; иерхарические, локальные и дивергентные сети.
1.По количеству цитоплазматических отростков принято различать:
Униполярные нейроны имеют единственный, обычно сильно разветвлённый первичный отросток. Одна из его ветвей функционирует как аксон, а остальные - как дендриты. Такие клетки часто встречаются в нервной системе беспозвоночных, а у позвоночных они обнаруживаются лишь в некоторых ганглиях вегетативной нервной системы.
У биполярных клеток есть два отростка: дендрит проводит сигналы от периферии к телу клетки, а аксон передаёт информацию от тела клетки к другим нейронам. Так выглядят, например, некоторые сенсорные нейроны, встречающиеся в сетчатке глаза, в обонятельном эпителии. К этой же разновидности нейронов следует отнести и чувствительные клетки спинальных ганглиев, воспринимающих, например, прикосновение к коже или боль, хотя формально от их тела отходит лишь один отросток, который разделяется на центральную и периферическую ветви. Такие клетки называют псевдоуниполярными, они формировались первоначально как биполярные нейроны, но в процессе развития два их отростка соединились в один, у которого одна ветвь функционирует как аксон, а другая - как дендрит.
У мультиполярных клеток один аксон, а дендритов может быть очень много, они отходят от тела клетки, а затем многократно делятся, образуя на своих ветвях многочисленные синапсы с другими нейронами. Так, например, на дендритах только одного мотонейрона спинного мозга образуется около 8000 синапсов, а на дендритах находящихся в коре мозжечка клеток Пуркинье может быть до 150 000 синапсов. Нейроны Пуркинье являются и самыми крупными клетками человеческого мозга: диаметр их тела около 80 мкм. А рядом с ними обнаруживаются крохотные зернистые клетки, их диаметр всего лишь 6-8 мкм. Мультиполярные нейроны встречаются в нервной системе чаще всего и среди них выявляется множество внешне не похожих друг на друга клеток.
2.По локализации нейроны подразделяются на центральные и периферические. Центральными называются те нейроны, тела которых лежат в пределах ЦНС. Периферические нейроны принадлежат периферической нервной системе. Они могут залегать в спинно-мозговых ганглиях, в ганглиях черепно-мозговых нервов, в ганглиях вегетативной нервной системы.
3.В зависимости от выполняемой функции нейроны делятся на 3 основные группы:
афферентные (чувствительные)
эфферентные (двигательные)
вставочные (контактные).
Афферентные нейроны обеспечивают восприятие раздражения и передачу информации в ЦНС.
Эфферентные нейроны обеспечивают передачу информации от ЦНС на периферию. Передают команды от центральной нервной системы к скелетным или к гладким мышцам, к сердечной мышце или к железам внешней секреции.
Вставочные нейроны обеспечивают передачу информации внутри ЦНС (с афферентных нейронов на эфферентные). Среди них встречаются локальные и проекционные нейроны. Другое название проекционных нейронов - релейные; у них, как правило, длинные аксоны, с помощью которых эти клетки могут передавать переработанную информацию отдалённым регионам мозга. У локальных интернейронов аксоны короткие, эти клетки перерабатывают информацию в ограниченных локальных цепях и взаимодействуют преимущественно с соседними нейронами.
4.В зависимости от эффекта вставочные нейроны подразделяются на:
возбуждающие – оказывают возбуждающее влияние на эфферентные нейроны
тормозные – оказывают тормозное влияние на эфферентные нейроны.
5.В зависимости от вида медиатора в синапсе нейрона различают:
холинергические нейроны (медиатор – ацетилхолин)
адренергические нейроны (медиаторы – адреналин и норадреналин)
Нейронные сети (ансамбли):1. Локальные – фильтрация поступающей информации. 2.Иерархические – Участвуют в обработке одной и той же информации. 3. Дивергентные с одним входом – обеспечивают расходящиеся связи нейронов как на своем, так и на отдаленных уровнях ЦНС.
Нейронная сеть. Важной единицей функциональной активности ЦНС считается элементарная нейронная сеть. Типы сетей. В настоящее время сетевой принцип в обеспечении процессов переработки информации получает все большее распространение. В основе этого направления лежат идеи о сетях нейроноподобных элементов, объединение которых порождает новые системные (эмерджентные) качества, не присущие отдельным элементам этой сети. По характеру организации в нервной системе чаще всего выделяют три типа сетей: иерархические, локальные и дивергентные.
Иерархические характеризуются свойствами конвергенции (несколько нейронов одного уровня контактируют с меньшим числом нейронов другого уровня) и дивергенции (нейрон нижележащего уровня контактирует с большим числом клеток вышележащего уровня). Благодаря этому информация может многократно фильтроваться и усиливаться. Наиболее характерен такой тип сетей для строения сенсорных и двигательных путей. Сенсорные системы организованы по принципу восходящей иерархии: информация поступает от низших центров к высшим. Двигательные, напротив, организованы по принципу нисходящей иерархии: из высших корковых центров команды поступают к исполнительным элементам (мышцам). Иерархические сети обеспечивают очень точную передачу информации, однако выключение хотя бы одного звена (в результате травмы) приводит к нарушению работы всей сети.
В локальных сетях поток информации удерживается в пределах одного иерархического уровня, оказывая на нейроны-мишени возбуждающее или тормозящее действие, что позволяет модулировать поток информации. Таким образом, нейроны локальных сетей действуют как своеобразные фильтры, отбирая и сохраняя нужную информацию. Предполагается, что подобные сети имеются на всех уровнях организации мозга. Сочетание локальных сетей с дивергентным или конвергентным типом передачи может расширять или сужать поток информации.
Дивергентные сети характеризуются наличием нейронов, которые, имея один вход, на выходе образуют контакты с множеством других нейронов. Таким путем эти сети могут влиять одновременно на активность множества элементов, которые при этом могут быть связаны с разными иерархическими уровнями. Являясь интегративными по принципу строения, эти сети, по-видимому, выполняют централизованную регуляцию и управление динамикой информационного процесса.
В составе нервного центра имеет место относительно небольшое количество жестких, генетически детерминированных связей и очень большое количество гибких связей, формирующихся в процессе той или иной деятельности целостного организма. Поскольку такая деятельность проявляется несколькими функциями, сочетание которых постоянно меняется, то это требует выключения одних нервных центров и включения других. Вследствие этого в ЦНС в каждый момент времени формируется определенный ансамбль нервных центров, что было обозначено как их констелляция.