Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Teoria_igr.doc
Скачиваний:
44
Добавлен:
24.09.2019
Размер:
1.18 Mб
Скачать

40.2. Матричные игры

Определение 13. Игру, в которой участвуют два игрока, называют парной игрой.

Пусть в игре участвуют два игрока А и В. Каждый из игроков располагает конечным числом чистых стратегий. Обозначим их соответственно: , , …, – стратегии первого игрока, , , …, – стратегии второго игрока. Игрок А может выбрать любую чистую стратегию , , в ответ на которую игрок В может выбрать любую свою чистую стратегию , . Если игра состоит только из личных ходов, то выбор пары стратегий однозначно определяет результат – выигрыш игрока А. При этом проигрыш игрока В составит (выигрыш игрока В равен ). Если известны значения для каждой пары чистых стратегий, то можно составить матрицу выигрышей игрока А (проигрышей игрока В) .

Определение 14. Прямоугольную матрицу размерности , где  (число строк) – число чистых стратегий первого игрока, а (число столбцов) – число стратегий второго игрока, а в клетках указаны выигрыши игроков для каждой ситуации, называют платежной матрицей игры (матрицей выигрышей, матрицей платежей) первого игрока.

Определение 15. Игры двух игроков, функции выигрышей которых можно представить в виде матриц, называют матричными.

Замечание 1. Платежная матрица второго игрока: .

Замечание 2. Для наглядности матрицы выигрышей обоих игроков объединяют в биматрицу игры, элементами которой являются упорядоченные пары, состоящие из выигрыша первого и проигрыша второго игрока при данной стратегии:

.

Пример 40.1. Два игрока независимо друг от друга записывают любое целое число. Если выписанные числа имеют одинаковую четность, то игрок А получает от игрока В один рубль, а если разную, то наоборот, игрок А платит игроку В один рубль. Требуется составить платежную матрицу игры.

Решение. Игрок А имеет две стратегии: – записать четное число, – записать нечетное число. Игрок В также имеет две стратегии: – записать четное число, – записать нечетное число. Выбор игроками соответствующих стратегий и однозначно определяет исход игры: – выигрыш игрока А. Стратегиям и соответствует выигрыш игрока А, равный одному рублю, а стратегиям и соответствует проигрыш игрока, равный одному рублю. Тогда платежные матрицы игроков и биматрица игры будут иметь вид

, , .

Пример 40.2. Две фирмы функционируют на рынке одновременно с одинаковым товарным объемом . У обеих фирм по соображениям рентабельности есть следующие стратегии: либо вбросить на рынок полный объем товара , либо выбросить на рынок половину объема 0,5 . Если первая фирма выбрасывает на рынок полный объем товара, а вторая – половину объема, то первая фирма получает 100 % запланированной прибыли, а вторая – только 25 %, и наоборот. Если обе фирмы выбрасывают на рынок по полному объему прибыли, то получат по 15 % прибыли; если по половине объема, то прибыль каждой из фирм составит по 50 % от запланированной.

Решение. Обозначим – объем товара для каждой из фирм. Для первой фирмы возможны две стратегии: , (выбросить на рынок весь объем товара или его половину). Аналогично для второй фирмы: , (выбросить на рынок весь объем товара или его половину). Примем долю прибыли (в процентах от запланированной) за значение выигрыша при каждой стратегии. Тогда возможны следующие ситуации: и – одна из фирм выбросила товара, а другая товара; – обе фирмы выбросили по товара. Запишем матрицы выигрышей обеих фирм и биматрицу игры:

, , .

Пример 40.3. Две конкурирующие фирмы борются за рынки сбыта, других конкурентов в этом сегменте нет (дуополия). В этом случае каждый из игроков может назвать цену p, по которой он хочет продать определенное количество товара. При этом полагается, что потребители приобретут товар у фирмы, объявившей меньшую цену. В случае объявления одинаковой цены спрос распределяется между фирмами поровну.

Решение. Каждый из игроков обладает бесконечным числом стратегий. Функция выигрышей игроков характеризует величины дохода фирм в зависимости от объявленных цен. Так как доход фирмы , то функцию выигрышей игроков можно представить в виде

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]