Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЧИСЛОВАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ.docx
Скачиваний:
0
Добавлен:
24.09.2019
Размер:
363.8 Кб
Скачать

Интегралы

Первообра́зной[1] или примити́вной функцией (иногда называют также антипроизводной) данной функции f называют такую Fпроизводная которой (на всей области определения) равна f, то есть F ′ = f. Вычисление первообразной заключается в нахождении неопределённого интеграла, а сам процесс называется интегрированием.

Неопределённый интегра́л для функции   — это совокупность всех первообразных данной функции.

Таблица основных неопределённых интегралов

 

 

Рассмотрим основные свойства определенного интеграла, считая подынтегральную функцию интегрируемой на отрезке [a;b]. При выводе свойств будем использовать определение интеграла и формулу Ньютона-Лейбница.

1. Если с — постоянное число и функция ƒ(х) интегрируема на [a;b], то

т. е. постоянный множитель с можно выносить за знак определенного интеграла.

▼Составим интегральную сумму для функции с • ƒ(х). Имеем:

Тогда Отсюда вытекает, что функция с • ƒ(х) интегрируема на [а; b] и справедлива формула (38.1).▲

2. Если функции ƒ1(х) и ƒ2(х) интегрируемы на [а;b], тогда интегрируема на [а; b] их сумма u

т. е. интеграл от суммы равен сумме интегралов.

Свойство 2 распространяется на сумму любого конечного числа слагаемых.

3.

Это свойство можно принять по определению. Это свойство также подтверждается формулой Ньютона-Лейбница.

4. Если функция ƒ(х) интегрируема на [а; b] и а < с < b, то

т. е. интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности).

При разбиении отрезка [а;b] на части включим точку с в число точек деления (это можно сделать ввиду независимости предела интегральной суммы от способа разбиения отрезка [а; b] на части). Если с = хm, то интегральную сумму можно разбить на две суммы:

Каждая из написанных сумм является интегральной соответственно для отрезков [а; b], [а; с] и [с; b]. Переходя к пределу в последнем равенстве при n → ∞ (λ → 0), получим равенство (38.3).

Свойство 4 справедливо при любом расположении точек а, b, с (считаем, что функция ƒ (х) интегрируема на большем из получающихся отрезков).

Так, например, если а < b < с, то

Отсюда

(использованы свойства 4 и 3).

5. «Теорема о среднем». Если функция ƒ(х) непрерывна на отрезке [а; b], то существует тонка с є [а; b] такая, что

▼По формуле Ньютона-Лейбница имеем

где F'(x) = ƒ(х). Применяя к разности F(b)-F(a) теорему Лагранжа (теорему о конечном приращении функции), получим

F(b)-F(a) = F'(c)•(b-а) = ƒ(с)•(b-а).▲

С войство 5 («теорема о среднем») при ƒ (х) ≥ 0 имеет простой геометрический смысл: значение определенного интеграла равно, при некотором с є (а; b), площади прямоугольника с высотой ƒ (с) и основанием b- а  (см. рис. 170). Число

называется средним значением функции ƒ(х) на отрезке [а; b].

6. Если функция ƒ (х) сохраняет знак на отрезке [а; b], где а < b, то интеграл имеет тот же знак, что и функция. Так, если ƒ(х)≥0 на отрезке [а; b], то

▼По «теореме о среднем» (свойство 5)

где с є [а; b]. А так как ƒ(х) ≥ 0 для всех х Î [а; b], то и

ƒ(с)≥0, b-а>0.

Поэтому ƒ(с)•(b-а) ≥ 0, т. е.

7. Неравенство между непрерывными функциями на отрезке [а; b], (a<b) можно интегрировать. Так, если ƒ1(x)≤ƒ2(х) при х є [а;b], то

▼Так как ƒ2(х)-ƒ1(x)≥0, то при а < b, согласно свойству 6, имеем

Или, согласно свойству 2,

Отметим,что дифференцировать неравенства нельзя.

8. Оценка интеграла. Если m и М — соответственно наименьшее и наибольшее значения функции у = ƒ (х) на отрезке [а; b], (а < b), то

▼Так как для любого х є [а;b] имеем m≤ƒ(х)≤М, то, согласно свойству 7, имеем

Применяяк крайним интегралам свойство 5, получаем

Если ƒ(х)≥0, то свойство 8 иллюстрирует ся геометрически: площадь криволинейной трапеции заключена между площадями прямоугольников, основание которых есть [a;b], а высоты равны m и М (см. рис. 171).  

9. Модуль определенного интеграла не превосходит интеграла от модуля подынтегральной функции:

▼Применяя свойство 7 к очевидным неравенствам -|ƒ(х)|≤ƒ(х)≤|ƒ(х)|, получаем

Отсюда следует, что

10. Производная определенного интеграла по переменному верхнему пределу равна подынтегральной функции, в которой переменная интегрирования заменена этим пределом, т. е.

▼По формуле Ньютона-Лейбница имеем:

Следовательно,

Это означает, что определенный интеграл с переменным верхним пределом есть одна из первообразных подынтегральной функции.

Функция лат. слово functio – “исполнение”, “совершение”. Одно из основных понятий математики, выражающее зависимость одних переменных величин от других. Термин впервые появляется в 1692 г. у немецкого ученого Г.Лейбница притом не в современном понимании. Термин, близкий к современному встречается у швейцарского ученого И.Бернулли (1718 г.). Обозначение функции f(x) ввел российский ученый Л.Эйлер (1734 г.).

Вычисление площадей плоских фигур.

 

 

 

  Известно, что определенный интеграл на отрезке представляет собой площадь криволинейной трапеции, ограниченной графиком функции f(x). Если график расположен ниже оси Ох, т.е. f(x) < 0, то площадь имеет знак “-“, если график расположен выше оси Ох, т.е. f(x) > 0, то площадь имеет знак “+”.

 Для нахождения суммарной площади используется формула  .

Площадь фигуры, ограниченной некоторыми линиями может быть найдена с помощью определенных интегралов, если известны уравнения этих линий.

  Пример. Найти площадь фигуры, ограниченной линиями y = x, y = x2, x = 2.

 

  Искомая площадь (заштрихована на рисунке) может быть найдена по формуле:

(ед2)

 Нахождение площади криволинейного сектора.

 

 

 

  Для нахождения площади криволинейного сектора введем полярную систему координат. Уравнение кривой, ограничивающей сектор в этой системе координат, имеет вид r = f(j), где r - длина радиус – вектора, соединяющего полюс с произвольной точкой кривой, а j - угол наклона этого радиус – вектора к полярной оси.

Площадь криволинейного сектора может быть найдена по формуле

  

Вычисление длины дуги кривой.

 y y = f(x)

 

 DSi Dyi

  Dxi

 

 

Длина ломаной линии, которая соответствует дуге, может быть найдена как  .

Тогда длина дуги равна  .

Из геометрических соображений: 

В то же время 

Тогда можно показать, что

Т.е. 

Если уравнение кривой задано параметрически, то с учетом правил вычисления производной параметрически заданной функции получаем

,

где х = j(t) и у = y(t).

  Если задана пространственная кривая, и х = j(t), у = y(t) и z = Z(t), то

 

 

  Если кривая задана в полярных координатах, то

, r = f(j).

 

  Пример: Найти длину окружности, заданной уравнением x2 + y2 = r2.

 

1 способ.  Выразим из уравнения переменную у. 

Найдем производную 

Тогда 

Тогда S = 2pr. Получили общеизвестную формулу длины окружности.

 

2 способ. Если представить заданное уравнение в полярной системе координат, то получим: r2cos2j + r2sin2j = r2, т.е. функция r = f(j) = r,   тогда

Дискретная математика (конечная математика) - раздел математики, занимающийся изучением свойств объектов конечного характера. К их числу могут быть отнесены, например, конечные группы, конечные графы, некоторые математические модели преобразователей информации. 

Функции нескольких переменных

  1. Определение. Если каждой паре (x,y) значений двух независимых переменных из области Wставится определенное значение z, то говорят, что z есть функция двух переменных (x,y). 

    z=f(x,y)

  2. Геометрическое изображение функции двух переменных - поверхность.

  3. Частное и полное приращение функции.

Полное приращение функции 

Dz=f(x+Dxy+Dy)-f(x,y)

Частное приращение функции 

Dy z=f(x,y+Dy)-f(x,y)