- •1. Сущность железобетона, его структура. Область применения жбк.
- •2. Основные требования, предъявляемые к бетону. Классы и марки бетона.
- •3. Нормативные и расчетные сопротивления бетона, система нормативных коэффициентов.
- •4. Назначение и виды арматуры, Классификация арматуры и арматурных изделий.
- •5. Нормативные и расчетные сопротивления стальной арматуры, система расчетных коэффициентов.
- •6. Методы расчета строительных конструкций по предельным состояниям
- •9.Три задачи расчета строительных конструкций: статическая, геометрическая и физическая.
- •14. Особенности проектирования предварительно напряженных жбк
- •8. Способы создания и потери предварительного напряжения арматуры
- •13. Виды изгибаемых жбк, конструктивные особенности. Продольное и поперечное армирование.
- •15. Расчет прочности изгибаемых элементов прямоугольного сечения по нормальному сечению.
- •16. Расчет прочности изгибаемых элементов таврового сечения по нормальному сечению.
- •18.Виды сжатых и сжато-изогнутых элементов жбк, конструктивные особенности
- •19. Случаи малых и больших эксцентриситетов, коэффициенты продольного изгиба.
- •20. Расчет прочности сжатых и сжато-изогнутых жбк прямоугольного сечения.
- •21. Расчет прочности и особенности конструирования растянутых элементов.
- •22. Три категории требований к трещиностойкости жбк.
- •23. Расчет по образованию трещин в жбк. Основные положения расчета
- •24. Сопротивление раскрытию трещин в жбк. Основные положения расчета.
- •25. Расчет перемещений (прогибов) в жбк. Кривизна элементов.
- •34. Деревянные конструкции. Материалы для дк, свойства и расчетные характеристики древесины.
- •35. Основные положения расчета дк сплошных и составных сечений
- •36. Соединения элементов деревянных конструкций.
- •28. Каменные конструкции. Виды каменных кладок, их расчетные характеристики.
- •29. Расчет сжатых и изгибаемых кк, основные положения.
- •29. Опирание перекрытий на кирпичную кладку
- •30. Стальные конструкции. Материалы для мк. Классы и марки сталей.
- •31. Конструктивные особенности металлических конструкций
- •32. Основные положения расчета сжатых, растянут и изгибаемых элементов мк.
- •Формулы для определения расчетных сопротивлений
- •33. Соединения стальных конструкций
- •7. Нагрузки и воздействия. Классификация нагрузок по сНиП2.01.01-85*. Сочетание нагрузок
- •27. Типизация и стандартизация в строительстве. Модульная система, номинальные и конструктивные размеры зданий.
- •26.Типы бетонных и жб фундаментов. Конструктивные особенности одиночных фундаментов под колонны.
31. Конструктивные особенности металлических конструкций
Разнообразие конструктивных форм и статических схем обусловлено назначением конструкций, особенностями эксплуатации и характерам действующих нагрузок. Все эти разнообразные конструкции объединены двумя основными факторами.
Во-первых, исходным материалом для всех МК является прокатный металл, выпускаемый по единому стандарту (сортаменту): лист, уголок, швеллер, двутавр, труба и т. п. Из этого материала компонуются все разнообразные конструктивные формы.
Во-вторых, все конструкции объединены одним технологическим процессом их изготовления, в основе которого лежат холодная обработка металла (резка, гибка, образование отверстий и т.п.) и соединение деталей в конструктивные элементы и комплексы (сборочно-сварочные или сборочно-клепальные операции).
МК обладают следующими достоинствами:
Надежность МК обеспечивается близким совпадением их действительной работы (распределение напряжений и деформаций) с расчетными предположениями. Материал металлических конструкций (сталь, алюминиевые сплавы) обладает большой однородностью структуры и достаточно близко соответствует расчетным предпосылкам об упругой или упругопластической работе материала.
Легкость. Из всех изготовляемых в настоящее время несущих конструкций (железобетонные, каменные, деревянные) МК являются наиболее легкими.
Индустриальность. МК в основной своей массе изготовляются на заводах, оснащенных современным оборудованием, что обеспечивает высокую степень индустриальности их изготовления.
Непронициамость. Металлы обладают не только значительной прочностью, но и высокой плотностью, обеспечивающей непроницаемость для газов и жидкостей. Плотность металла и его соединений, осуществляемых с помощью сварки, является необходимым условием для изготовления и возведения листовых конструкций.
МК имеют и недостатки, ограничивающие их применение. Для нейтрализации этих недостатков необходимы специальные меры.
Коррозия. Незащищенная от действия влажной атмосферы, а иногда (что еще хуже) атмосферы, загрязненной агрессивными газами, сталь корродирует (окисляется), что постепенно приводит к се полному разрушению. При неблагоприятных условиях это может произойти через два-три года. Хотя алюминиевые сплавы обладают значительно большей стойкостью против коррозии, при неблагоприятных условиях они также корродируют. Хорошо сопротивляется коррозии чугун.
Повышение коррозионной стойкости МК достигается включением в сталь специальных легирующих элементов, периодическим покрытием конструкций защитными пленками (лаки, краски и т. п.), а также выбором рациональной конструктивной формы элементов (без щелей и пазух, где могут скапливаться влага и пыль), удобной для очистки и защиты.
Небольшая огнестойкость. У стали при t =+200°С начинает уменьшаться модуль упругости, а при t =+600°С сталь полностью переходит в пластическое состояние. Алюминиевые сплавы переходят в пластическое состояние уже при t =+300°С. Поэтому МК зданий, опасных в пожарном отношении (склады с горючими или легковоспламеняющимися материалами, жилые и общественные здания), должны быть защищены огнестойкими облицовками (бетон, керамика, специальные покрытия и т. п.).
При проектировании металлических конструкций должны учитываться следующие основные требования:
Условия эксплуатации. Удовлетворение заданным при проектировании условиям эксплуатации является основным требованием для проектировщика. Оно в основном определяет систему, конструктивную форму сооружения и выбор материала для него.
Экономия металла. Требование экономии металла определяется большой его потребностью во всех отраслях промышленности (машиностроение, транспорт и т. д.) и относительно высокой стоимостью. В строительных конструкциях металл следует применять лишь в тех случаях, когда замена его другими видами материалов (в первую очередь железобетоном) нерациональна.
Транспортабельность. В связи с изготовлением металлических конструкций, как правило, на заводах с последующей перевозкой на место строительства в проекте должна быть предусмотрена возможность перевозки их целиком или по частям (отправочными элементами) с применением соответствующих транспортных средств.
Долговечность конструкции определяется сроками ее физического и морального износа. Физический износ металлических конструкций связан главным образом с процессами коррозии. Моральный износ связан с изменением условий эксплуатации.
Все эти требования удовлетворяются конструкторами на основе выработанных наукой и практикой принципов советской школы проектирования и основных направлений ее развития.
