
- •1)Фазы сплавов: твердые растворы и промежуточные фазы. Влияние химического
- •2)Конструкционные стали нормальной прочности: углеродистые конструкционные стали обыкновенного качества и качественные стали. Состав, маркировка, упрочняющая обработка и применение.
- •1)Диаграмма состояния двойных сплавов с неограниченной растворимостью
- •2)Конструкционная прочность. Металлургические, технологические, конструкторские способы повышения конструкционной прочности.
- •1)Диаграмма состояния двойных сплавов с ограниченной переменной растворимостью компонентов в твердом состоянии. Термическая обработка сплавов этой диаграммы: отжиг, закалка, старение.
- •2)Легированные низкоуглеродистые и среднеуглеродистые конструкционные стали. Влияние легирующих элементов на механические свойства сталей, маркировка, упрочняющая обработка, применение.
- •2)Требования, предъявляемые к материалам для зубчатых колес. Выбор сталей и
- •1. Формирование структуры литых металлов. Влияние скорости охлаждения на величину зерна. Модифицирование.
- •2)Химико-термическая обработка сталей. Цементация, азотирование, нитроцементация. Режимы, назначение, достоинства и недостатки.
- •1)Элементарная ячейка кристаллической решетки и ее характеристики. Полиморфизм, анизотропия, их использование в технике.
- •2)Серые, ковкие, высокопрочные, вермикулярные чугуны. Их состав, марки, структуры, способы получения, свойства.
- •1)Виды термической обработки: отжиг, закалка, отпуск, старение. Использование диаграмм состояния двойных сплавов для определения возможных видов термической обработки.
- •I. Полный отжиг. Нагрев до температуры 900–1000° c. Как результат: происходит выравнивание химического состояния (исчезновение ликваций); образуется полностью
- •2)Закономерности усталостного разрушения в условиях высоких контактных нагрузок. Стали для зубчатых колес. Состав, марки, упрочняющая обработка.
- •1)Закалка сталей. Оптимальная температура закалки углеродистых сталей. Влияние легирующих элементов на критическую скорость закалки. Внутренние напряжения в закаленных сталях.
- •2)Антифрикционные материалы, используемые в узлах скольжения. Факторы, влияющие на коэффициент трения и пути его уменьшения.
- •1)Распад переохлажденного аустенита. Формирование структуры при перлитном, мартенситном и бейнитном превращениях. Строение и свойства продуктов распада.
- •2)Классификация медных сплавов. Латуни и бронзы, их состав, марки, свойства, применение.
- •2)Конструкционные стали нормальной прочности: углеродистые конструкционные стали обыкновенного качества и качественные стали. Состав, маркировка, упрочняющая обработка и применение.
- •1)Диаграмма состояния двойных сплавов с промежуточной фазы постоянного состава. Фазовый и структурный анализ. Механические свойства в зависимости от состава (правило Курнакова)
- •1)Отпуск закаленных сталей. Влияние легирующих элементов на превращения закаленных сталей при нагреве. Структура и свойства отпущенных сталей. Отпускная хрупкость.
- •2)Конструкционные стали, выбор которых определяется технологичес кими свойствами: стали с высокой обрабатываемостью резанием, свариваемостью, штампуемостью. Состав, марки, обработка, применение.
- •1)Строение реальных кристаллических материалов. Характеристика дефектов
- •2)Сравнительная характеристика антифрикционных материалов: баббитов, бронз, алюминиевых сплавов, многослойных подшипников.
- •1)Самопроизвольная и несамопроизвольная кристаллизация. Критический размер зародыша. Способы измельчения зерна литого металла. Строение слитков.
- •2)Конструкционные материалы малой плостности: алюминевые деформируемые сплавы упрочняемые и не упрочняемые термической обработкой, их состав, марки и применение.
- •1)Возврат и рекристаллизация холоднодеформированных металлов и сплавов. Изменение структуры и свойств. Рекристализационный отжиг – выбор режима, назначение.
- •1)Диаграмма состояния двойных сплавов для случая образования двойной фазы, фазовый и структурный анализ.
- •2)Алюминиевые литейные сплавы. Марки, свойства, применение.
- •1)Нитевидные кристаллы. Влияние плотности дислокаций на прочность металлов и сплавов. Способы упрочнения материалов.
- •2)Цементуемые и азотируемые стали, их состав, марки, термическая обработка и применение.
- •Влияние условий кристаллизации на структуру литого металла. Получение монокристаллов и аморфных сплавов.
- •2)Структура и свойства отожженных, нормализованных и термически улучшенных доэвтектоидных сталей. Режимы термических обработок.
- •1)Превращения закаленной стали при отпуске. Влияние температуры отпуска на свойства сталей. Выбор вида отпуска в зависимости от назначения деталей.
- •1) Низкотемпературный отпуск (низкий отпуск):
- •2) Среднетемпературный отпуск (средний отпуск):
- •3) Высокотемпературный отпуск (высокий отпуск):
- •2)Закономерности усталостного разрушения. Пути повышения предела выносливости.
- •2)Закономерности усталостного изнашивания в условиях высоких контактных нагрузок. Подшипниковые стали. Состав, марки, предварительная и упрочняющая обработка.
- •1)Влияние типа связи на структуру и свойства кристаллических материалов.
- •2)Классификация сталей по химическому составу, качеству, структуре в отожженном и нормализованном состояниях, уровню прочности. Маркировка конструкционных сталей.
- •1)Термическая обработка сплавов, не связанная с фазовыми превращениями: диффузионный отжиг, рекристаллизационный отжиг, отжиг для уменьшения внутренних напряжений. Режимы, структуры, назначение.
- •1.Диаграмма состояния железоуглеродистых сплавов. Строение и свойства фаз. Изотермические превращения в сталях и чугунах. Фазовый и структурный анализ диаграммы.
- •2. Критерии конструкционной прочности: критерии прочности, надежности, долговечности.
- •Точечные, линейные, поверхностные дефекты кристаллического строения и их влияние на физико-механические свойства металлов и сплавов.
- •Преимущества и недостатки магниевых сплавов. Состав, маркировка, упрочняющая обработка, применение.
1)Возврат и рекристаллизация холоднодеформированных металлов и сплавов. Изменение структуры и свойств. Рекристализационный отжиг – выбор режима, назначение.
После пластической деформации (наклепа) металл находится в термодинамически – неуравновешенном состоянии и стремится перейти в более устойчивое. При комнатной Т стр-ра и св-ва не меняются, нужен нагрев (отжиг). В рез-те нагрева сниж. прочность и повыш пластичность.
Возвратом называют все изменения тонкой структуры и свойств, которые не сопровождаются изменением микроструктуры деформированного металла, т.е. размер зерна и форма не меняется. Протекает при относительно низких Т (примерно 0.3 Тпл). При возврате восстан. э/сопр и плотность, мех. св-ва восст на 10-30%.
Рекристаллизация – процесс зарождения и роста новых зерен с меньшим кол-вом дефектов старения, в рез-те образуются новые, в осн. равноосные зерна.
Три типа рекристаллизации: Первичная, собирательная, вторичная.
Первичная – начинается с образования зародышей новых зерен и заканчивается полным замещением наклепанного металла новой поликристаллической структурой. Снижается прочность, повышается пластичность. Для начала первичной крист. необходимы 2 условия:
1) предварительная деформация металла д.б. больше критической;
2)температура нагрева должна быть выше критич значения, сосавляющего нек долю от Тпл металла: Трек=Тпл. Альфа характеризует чистоту металла.
Первичная рекристаллизация полностью снимает наклеп, ме приобретает равновесную структуру.
Собирательная – самопроизвольный процесс укрупнения зерен, образовавшихся на стадии первичной рекристаллизации. С увеличением размера зерна уменьшается сумм пов-ть границ зерен,= и запас избыт пов-ной энергии.
Рост зерен происходит в рез-те перехода атомов от одного зерна к другому через границу раздела. С повышением Т рост ускоряется. Собирательная рекристаллизация останавливается, когда зерна становятся многогранниками с углом 120.
Вторичная рекристаллизация – неравномерный рост одних зерен по сравн с другими. В рез-те ухудшение механических свойств. Происходит при высоких Т нагрева наклепанного металла.
Отжиг при Т выше Трек (на 150-200) называется рекристаллизационным. Применяется для снятия наклепа и восстановления пластичности. Чем выше температура отжига – тем крупнее зерно. При выборе режима отжига нужно избегать получения очень крупного зерна и разнозернистости. Скорость нагрева чаще всего не имеет значения.
2)Высокопрочные легированные стали. Среднеуглеродистые стали, упрочняемые термической и термомеханической обработкой. Мартенситно-стареющие стали – состав, марки, упрочняющая обработка, применение.
Развитие техники требует сталей с «сигма-в»>1500 МПа. Осн недостаток – имеют высокую чувствит. к концентраторам напряжений (надрезам, трещинам, царапинам).
1) Среднеуглеродистые комплексно-легированные низкоотпущенные стали.
После закалки и низкого отпуска уровень прочности зависит только от кол-ва С. Увеличение его до 0.4 повышает «сигма-в» до 2400 МПа,, но тогда угл ст. имеет полностью хрупкое разрушение. Для повышения вязкости добавляют Ni, 1,5-3%. Чем больше его – тем выше порог хладноломкости и больше уровень прочности. Вместе с ним вводят W, Mo, Si, Vn для повышения Т отпуска -> полнее снимаются закал напряжения. Карбидообр эл-ты служат так-же для измельчения зерна. Cr и Mn вводят для прокаливаемости.
Самые распространенные: 30ХГСНА (самолеты), 40ХГСН3ВА, 40ХН2СМА, 30Х2ГСН2ВМ, 30Х5МСФА.
2) Среднеуглеродистые, упрочненные ТМО.
ТМО – пластическая деформация аустенита + закалка (в одном процессе). Такое чудо применимо к ср/угл легир сталям – 30ХГСА, 40ХН, 40ХН2МА, 38ХН3МА и др. Обеспечивается высокая прочность (сигма-в 2000-2800 Мпа при небольших размерах), при достаточном запасе пластичности и вязкости.
В зав-ти от усл деформ аустенита – выше или ниже Трек, различают ВТМО и НТМО (высоко-/низкотемперат.).ВТМО – сталь деформ. выше А3 и сразу закалка, чтоб не допустить рекрист аустенита. При НТМО деформ происх при Т=400-600. Рекрист не происходит, но нужно избегать образ бейнита.
ТМО обоих видов заканчивается низким отпуском при 100-200. В рез-те повышается весь комплекс мех св-в, особенно пластичность и вязкость. Прирост прочности сост 200-500 МПа, пласт. и вязкость увелич. в 2 раза.
НТМО – для легир сталей с устойчивым переохл аустенитом. Выше прочность, технологически сложнее.
ВТМО – для любых конст сталей. Выше пластичность.
3) Мартенситно-стареющие стали.
Особый класс высокопрочных материалов. Конструкционная прочность и технологичность выше, чем у среднеуглеродистых сталей.
Основа – безуглеродистые (<0.03% C) сплавы железа с 8-25% никеля, легированные Co, Mo, Ti, Al, Cr и др эл-ми. Марки 03Н18К9М5Т, 03Н12К15М10, 03Х11Н10М2Т. Высокая прочность достигается за счет 2 мех-мов: мартенситное - превращение и старение мартенсита. Мартенситно – стар. стали закаливаются на воздухе при Т=800-860. При нагреве легир эл-ты, облад огранич и перем раствор-ю, переходят в -раствор из Fe. Закалка фиксирует пересыщенный железоникелевый мартенсит. Благодаря выс содерж никеля и кобальта. при малом содерж углерода, дислокации высокоподвижны. Следствие – выс пластичность и вязкость. Основное упрочнение достигается при старении (480-520), когда из мартенсита выдел мелкодисперсные частицы вторичных фаз (Ni3Ti, NiAl, Fe2Mo, Ni3Mo и др.), когерентно связ с матрицей. Наибольшее упрочнение при старении вызывают Ти и Ал.
Для мартенситно – стареющих сталей характерны выс предел текучести (сигма-в=1600-2100 МПа), более высокий, чем у пружинных спл предел упругости (сигма – 0.002 = 1300 МПа), низкий порог хладноломкости. Малая чувствительность к надрезам, высокое сопротивл хрупкому разрушению. При содержании Хрома от 12% они корроз – стойкие. Высокотехнологичны. Неограниченная прокаливаемость, хорошо свариваются, при термообработке нет коробления и обезуглероживания.
Применяются для ответственных деталей в авиации, ракетной технике, судостроении.
Билет18