
- •Экзаменационные вопросы по дисциплине «Электротехнические материалы». Содержание:
- •Классификация материалов.
- •Диэлектрик в электрическом поле.
- •Поляризация диэлектриков и диэлектрическая проницаемость.
- •Основные виды поляризации диэлектриков.
- •Зависимость проницаемости от давления и температуры.
- •Классификация диэлектриков по виду поляризации.
- •Истинное сопротивление диэлектриков.
- •Объёмная и поверхностная проводимости.
- •Пробой диэлектриков. Пробивное напряжение и электрическая прочность диэлектриков.
- •Пробой газов.
- •Пробой жидких диэлектриков.
- •Пробой твёрдых диэлектриков.
- •Химические свойства диэлектриков.
- •Влажностные свойства диэлектриков.
- •Гигроскопичность, влагопроницаемость.
- •Тепловые свойства диэлектриков.
- •Механические свойства диэлектриков.
- •Классификация диэлектрических материалов.
- •Газообразные диэлектрики.
- •Жидкие диэлектрики.
- •Синтетические масла.
- •Органические полимеры.
- •Природные смолы.
- •Синтетические смолы.
- •Эпоксидные смолы.
- •Электроизоляционные лаки.
- •Компаунды.
- •Волокнистые материалы.
- •Текстильные материалы. Лакоткани.
- •Слоистые пластики.
- •Эластомеры.
- •Неорганические материалы. Стёкла.
- •Керамические диэлектрические материалы.
- •Слюда и слюдяные материалы.
- •Асбест и асбестовые материалы.
- •Проводниковые материалы.
- •Материалы высокой проводимости.
- •Сплавы высокого сопротивления.
- •Магнитные материалы. Общие сведения.
- •Классификация магнитных материалов.
- •Магнитомягкие материалы.
- •Магнитотвёрдые материалы.
Газообразные диэлектрики.
Основные характеристики газов, как диэлектриков, это диэлектрическая проницаемость, электропроводность, электрическая прочность. Кроме того, зачастую важны теплофизические характеристики, в первую очередь теплопроводность.
Диэлектрическую проницаемость газов очень просто рассчитать по формуле =1+n(2 3 kT)/ 0, где n - число молекул с поляризуемостью и дипольным моментом в единице объема. Обычно значение близко к 1, отличие от единицы можно обнаружить в 3-4 знаке после запятой. Причина этого - малое число молекул в газовой фазе n.
Электропроводность газов обычно не хуже 10-13 См/м, причем, как было показано во второй главе, основным фактором вызывающим проводимость в не очень сильных полях, является ионизирующее излучение. Вольт-амперная характеристика имеет три характерные зоны - омическое поведение, насыщение, экспоненциальный рост. Диэлектрические потери незначительны и их стоит учитывать только в третьей области.
Электрическая прочность у газов, сравнительно с прочностью жидкостей и твердых диэлектриков, невелика и сильно зависит как от внешних условий, так и от природы газа. Обычно пробивные характеристики разных газов сопоставляют при нормальных условиях (н.у.). Эти условия - давление 1 атм, температура 20 ° С, электроды, создающие однородное поле, площадью 1 см2, межэлектродный зазор 1 см. Воздух при н.у. имеет электрическую прочность 30 кВ/см. Коэффициент к, показывающий отношение электрической прочности газа к электрической прочности воздуха составляет для некоторых газов, используемых в технике: водород- к=0.5, гелий- к=0.2, элегаз к=2.9, фреон-12- к=2.4, перфторированные углеводородные газы к=(4-10).
Теплопроводность газов также невелика по сравнению с теплопроводностью твердых тел и жидкостей, наибольшее ее значение = 0.2 Вт/(м· К) - у водорода. Для наиболее популярных газов = 0.03 Вт/(м· К) - воздух, l = 0.012 Вт/(м·К) - элегаз. Для сравнения - у алюминия = 200 Вт/(м·К).
Наибольшее применение из газов в энергетике имеет воздух. Это связано с дешевизной, общедоступностью воздуха, простотой создания, обслуживания и ремонта воздушных электроизоляционных систем, возможностью визуального контроля. Объекты, в которых применяется воздух в качестве электрической изоляции - линии электропередач, открытые распределительные устройства, воздушные выключатели и т.п.
Электроотрицательными называются газы, молекулы которых обладают сродством к электрону, это означает, что при захвате электрона и превращении молекулы в отрицательный ион выделяется энергия. Этот процесс приводит к явлению прилипания электронов, и уменьшению, тем самым, эффективного коэффициента ударной ионизации на значение коэффициента прилипания
эфф= Поэтому электроотрицательные газы имеют повышенную электрическую прочность. Из электроотрицательных газов с высокой электрической прочностью наибольшее применение нашел элегаз SF6.. Свое название он получил от сокращения “электрический газ”. Из других полезных свойств отметим следующие: химическая инертность, нетоксичность, негорючесть, термостойкость (до 800° С), взрывобезопасность, слабое разложение в разрядах, низкая температура сжижения. В отсутствие примесей элегаз совершенно безвреден для человека. На основе элегазовой изоляции созданы и эксплуатируются ряд электроустройств, из них кабели, конденсаторы, выключатели, компактные ЗРУ (закрытые распределительные устройства).