Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Vse_voprosy.docx
Скачиваний:
20
Добавлен:
23.09.2019
Размер:
1.78 Mб
Скачать

Энергия связи

Зависимость средней энергии связи (по оси y) от массового числа (по оси x) ядер.

Большая энергия связи нуклонов, входящих в ядро, говорит о существовании ядерных сил, поскольку известные гравитационные силы слишком малы, чтобы преодолеть взаимное электростатическое отталкивание протонов в ядре. Связь нуклонов осуществляется чрезвычайно короткоживущими силами, которые возникают вследствие непрерывного обмена частицами, называемыми пи-мезонами, между нуклонами в ядре.

Экспериментально было обнаружено, что для всех стабильных ядер масса ядра меньше суммы масс составляющих его нуклонов, взятых по отдельности. Эта разница называется дефектом массы или избытком массы и определяется соотношением:

,

где и  — массы свободного протона и нейтрона,  — масса ядра.

Согласно принципу эквивалентности массы и энергии дефект массы представляет собой массу, эквивалентную работе, затраченной ядерными силами, чтобы собрать все нуклоны вместе при образовании ядра. Эта величина равна изменению потенциальной энергии нуклонов в результате их объединения в ядро.

Энергия, эквивалентная дефекту массы, называется энергией связи ядра и равна:

,

где  — скорость света в вакууме.

Другим важным параметром ядра является энергия связи, приходящаяся на один нуклон ядра, которую можно вычислить, разделив энергию связи ядра на число содержащихся в нём нуклонов:

Эта величина представляет собой среднюю энергию, которую нужно затратить, чтобы удалить один нуклон из ядра, или среднее изменение энергии связи ядра, когда свободный протон или нейтрон поглощается в нём.

Как видно из поясняющего рисунка, при малых значениях массовых чисел удельная энергия связи ядер резко возрастает и достигает максимума при (примерно 8,8 Мэв). Нуклиды с такими массовыми числами наиболее устойчивы. С дальнейшим ростом средняя энергия связи уменьшается, однако в широком интервале массовых чисел значение энергии почти постоянно ( МэВ), из чего следует, что можно записать .

Такой характер поведения средней энергии связи указывает на свойство ядерных сил достигать насыщения, то есть на возможность взаимодействия нуклона только с малым числом «партнёров». Если бы ядерные силы не обладали свойством насыщения, то в пределах радиуса действия ядерных сил каждый нуклон взаимодействовал бы с каждым из остальных и энергия взаимодействия была бы пропорциональна , а средняя энергия связи одного нуклона не была бы постоянной у разных ядер, а возрастала бы с ростом .

Общая закономерность зависимости энергии связи от массового числа описывается формулой Вайцзеккера в рамках теории капельной модели ядра

Ядерные силы — это силы, удерживающие нуклоны в ядре, представляющие собой большие силы притяжения, действующие только на малых расстояниях. Они обладают свойствами насыщения, в связи с чем ядерным силам приписывается обменный характер (с помощью пи-мезонов). Ядерные силы зависят от спина, не зависят от электрического заряда и не являются центральными силами.

В процессе развития физики выдвигались различные гипотезы строения атомного ядра. Наиболее известными являются следующие:

  • Капельная модель ядра — предложена в 1936 году Нильсом Бором.

  • Оболочечная модель ядра — предложена в 30-х годах XX века.

  • Обобщённая модель Бора — Моттельсона.

  • Кластерная модель ядра

  • Модель нуклонных ассоциаций

  • Оптическая модель ядра

  • Сверхтекучая модель ядра

  • Статистическая модель ядра

№41

Радиоакти́вный распа́д (от лат. radius «луч» и āctīvus «действенный») — спонтанное изменение состава нестабильных атомных ядер (заряда Z, массового числа A) путём испускания элементарных частиц или ядерных фрагментов[1]. Процесс радиоактивного распада также называют радиоакти́вностью, а соответствующие элементы радиоактивными. Радиоактивными называют также вещества, содержащие радиоактивные ядра.

Установлено, что радиоактивны все химические элементы с порядковым номером, большим 82 (то есть начиная с висмута), и многие более лёгкие элементы (прометий и технеций не имеют стабильных изотопов, а у некоторых элементов, таких как индий, калий или кальций, часть природных изотопов стабильны, другие же радиоактивны).

Естественная радиоактивность — самопроизвольный распад ядер элементов, встречающихся в природе.

Искусственная радиоактивность — самопроизвольный распад ядер элементов, полученных искусственным путем через соответствующие ядерные реакции.

Энергетические спектры α-частиц и γ-квантов, излучаемых радиоактивными ядрами, прерывистые («дискретные»), а спектр β-частиц — непрерывный.

Распад, сопровождающийся испусканием альфа-частиц, назвали альфа-распадом; распад, сопровождающийся испусканием бета-частиц, был назван бета-распадом (в настоящее время известно, что существуют типы бета-распада без испускания бета-частиц, однако бета-распад всегда сопровождается испусканием нейтрино или антинейтрино). Термин «гамма-распад» применяется редко; испускание ядром гамма-квантов называют обычно изомерным переходом. Гамма-излучение часто сопровождает другие типы распада.

В настоящее время, кроме альфа-, бета- и гамма-распадов, обнаружены распады с эмиссией нейтрона, протона (а также двух протонов), кластерная радиоактивность, спонтанное деление. Электронный захват, позитронный распад (или -распад), а также двойной бета-распад (и его виды) обычно считаются различными типами бета-распада.

Некоторые изотопы могут испытывать одновременно два или более видов распада. Например, висмут-212 распадается с вероятностью 64 % в таллий-208 (посредством альфа-распада) и с вероятностью 36 % в полоний-212 (посредством бета-распада).

Образовавшееся в результате радиоактивного распада дочернее ядро иногда оказывается также радиоактивным и через некоторое время тоже распадается. Процесс радиоактивного распада будет происходить до тех пор, пока не появится стабильное, то есть нерадиоактивное ядро, а последовательность возникающих при этом нуклидов называется радиоактивным рядом. В частности, для радиоактивных рядов, начинающихся с урана-238, урана-235 и тория-232, конечными (стабильными) нуклидами являются соответственно свинец-206, свинец-207 и свинец-208.

Излучение радиоактивных веществ. Естественные радиоактивные элементы испускают три вида излучений: альфа, бета и гамма. В 1899 Резерфорд идентифицировал альфа- и бета-излучение; спустя год П.Вийар открыл гамма-излучение. Альфа-излучение. В воздухе при атмосферном давлении альфа-излучение преодолевает лишь небольшое расстояние, как правило, от 2,5 до 7,5 см. В условиях вакуума электрическое и магнитное поля заметно отклоняют его от первоначальной траектории. Направление и величина отклонений указывают на то, что альфа-излучение - это поток положительно заряженных частиц, для которых отношение заряда к массе (e/m) в точности соответствует дважды ионизированному атому гелия (He++). Эти данные и результаты спектроскопического исследования собранных альфа-частиц позволили Резерфорду сделать вывод о том, что они являются ядрами атома гелия.

α-распадом называют самопроизвольный распад атомного ядра на дочернее ядро и α-частицу (ядро атома 4He).

α-распад, как правило, происходит в тяжёлых ядрах с массовым числом А≥140 (хотя есть несколько исключений). Внутри тяжёлых ядер за счёт свойства насыщения ядерных сил образуются обособленные α-частицы, состоящие из двух протонов и двух нейтронов. Образовавшаяся α-частица подвержена большему действию кулоновских сил отталкивания от протонов ядра, чем отдельные протоны. Одновременно α-частица испытывает меньшее ядерное притяжение к нуклонам ядра, чем остальные нуклоны. Образовавшаяся альфа-частица на границе ядра отражается от потенциального барьера внутрь, однако с некоторой вероятностью она может преодолеть его (см. Туннельный эффект) и вылететь наружу. С уменьшением энергии альфа-частицы проницаемость потенциального барьера экспоненциально уменьшается, поэтому время жизни ядер с меньшей доступной энергией альфа-распада при прочих равных условиях больше.

Правило смещения Содди для α-распада:

.

Пример:

.

В результате α-распада элемент смещается на 2 клетки к началу таблицы Менделеева, массовое число дочернего ядра уменьшается на 4.

Бета-излучение. Это излучение обладает большей проникающей способностью, чем альфа-излучение. Как и альфа-излучение, оно отклоняется в магнитном и электрическом полях, но в противоположную сторону и на большее расстояние. Это указывает на то, что бета-излучение является потоком отрицательно заряженных частиц малой массы. По отношению e/m Резерфорд идентифицировал бета-частицы как обычные электроны.

Беккерель доказал, что β-лучи являются потоком электронов. β-распад — это проявление слабого взаимодействия.

β-распад (точнее, бета-минус-распад, -распад) — это радиоактивный распад, сопровождающийся испусканием из ядра электрона и антинейтрино.

β-распад является внутринуклонным процессом. Он происходит вследствие превращения одного из d-кварков в одном из нейтронов ядра в u-кварк; при этом происходит превращение нейтрона в протон с испусканием электрона и антинейтрино:

Правило смещения Содди для -распада:

Пример:

После -распада элемент смещается на 1 клетку к концу таблицы Менделеева (заряд ядра увеличивается на единицу), тогда как массовое число ядра при этом не меняется.

Гамма-излучение. Гамма-излучение проникает в вещество гораздо глубже, чем альфа- и бета-излучения. Оно не отклоняется в магнитном поле и, следовательно, не имеет электрического заряда. Гамма-лучи были идентифицированы как жесткое (т.е. имеющее очень высокую энергию) электромагнитное излучение. Разделение радиоактивного излучения в магнитном поле на альфа-, бета- и гамма-лучи схематично показано на рисунке.

Почти все ядра имеют, кроме основного квантового состояния, дискретный набор возбуждённых состояний с большей энергией (исключением являются ядра 1H, 2H, 3H и 3He). Возбуждённые состояния могут заселяться при ядерных реакциях либо радиоактивном распаде других ядер. Большинство возбуждённых состояний имеют очень малые времена жизни (менее наносекунды). Однако существуют и достаточно долгоживущие состояния (чьи времена жизни измеряются микросекундами, сутками или годами), которые называются изомерными, хотя граница между ними и короткоживущими состояниями весьма условна. Изомерные состояния ядер, как правило, распадаются в основное состояние (иногда через несколько промежуточных состояний). При этом излучаются один или несколько гамма-квантов; возбуждение ядра может сниматься также посредством вылета конверсионных электронов из атомной оболочки. Изомерные состояния могут распадаться также и посредством обычных бета- и альфа-распадов.

СХЕМА ЭКСПЕРИМЕНТА, иллюстрирующего отклонение разных видов радиоактивного излучения в магнитном поле.

Ядерная реакция характеризуется энергией ядерной реакции (энергетическим выходом реакции), равной разности энергий покоя ядра и частиц до реакции и после нее, т.е.

где — сумма масс частиц до реакции, — сумма масс частиц после реакции.

Если то реакция идет с выделением энергии и называется экзотермической, если то реакция идет с поглощением энергии и называется эндотермической.

Ниже сказанное (то что в скобочках) не из вопроса, но на мой взгляд может пригодиться.

(((Ядерные реакции классифицируются по следующим признакам:

1) по роду участвующих в них частиц: реакции под действием нейтронов; реакции под действием заряженных частиц (протонов, дейтронов, -частиц); реакции под действием -квантов;

2) по энергии вызывающих их частиц: реакции при малых энергиях (порядка электрон-вольт), происходящие в основном с участием нейтронов; реакции при средних энергиях (до нескольких мегаэлектрон-вольт, происходящие с участием -квантов и заряженных частиц (протонов, -частиц); реакции при высоких энергиях (сотни и тысячи мегаэлектронвольт), приводящие к рождению отсутствующих в свободном состоянии элементарных частиц и имеющие большое значение для их изучения;

3) по роду участвующих в них ядер: реакции на легких ядрах (A < 50); реакции на средних ядрах (50 < А < 100); реакции на тяжелых ядрах (А > 100);

4) по характеру происходящих ядерных превращений: реакции с испусканием нейтронов; реакции с испусканием заряженных частиц; реакции захвата (в случае этих реакций составное ядро не испускает никаких частиц, а переходит в основное состояние, излучая один или несколько -квантов).

Первая в истории ядерная реакция осуществлена Э. Резерфордом (1919) при бомбардировке ядер азота а-частицами, испускаемыми радиоактивным источником:

Ядерные реакции под действием -частиц привели к открытию нейтрона (Дж. Чедвиком):

Примером ядерной реакции, осуществляемой при бомбардировке ускоренными протонами, является реакция:

Под действием медленных нейтронов:

)))

№42

Элемента́рная части́ца — собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить на составные части.

Следует иметь в виду, что некоторые элементарные частицы (электрон, фотон, кварки и т. д.) на данный момент считаются бесструктурными и рассматриваются как первичные фундаментальные частицы. Другие элементарные частицы (так называемые составные частицы — протон, нейтрон и т. д.) имеют сложную внутреннюю структуру, но, тем не менее, по современным представлениям, разделить их на части невозможно.

    Взаимодействие частиц в квантовой теории поля рассматривается как обмен виртуальной частицей. В основе такого представления лежит принцип (соотношения) неопределённости.     Из соотношений неопределенности

Δx·Δpx > ћ, Δy·Δpy > ћ, Δz·Δpz > ћ, Δt·ΔE > ћ.

следует, что если частица существует в течение короткого промежутка времени Δt, то ее энергия может флюктуировать на величину ћ/Δt, а если она находится в области размером (Δx, Δy, Δz) то ее импульс (Δpx, Δpy, Δpz) флюктуирует на величину ( ћ/Δx, ћ/Δy, ћ/Δz). Таким образом, в течение малых промежутков времени Δt и на малых расстояниях (Δx, Δy, Δz) может нарушаться соотношение между импульсом и энергией частицы.

E = (p2c2 +m2c4)1/2.

    Частицы, для которых нарушается соотношение между импульсом и энергией называются виртуальными. Говорят, что они находятся вне массовой поверхности. В виртуальных процессах справедливы законы сохранения зарядов − электрического, барионного, лептонных.     Взаимодействия осуществляются с помощью обмена виртуальными частицами — переносчиками этих взаимодействий. Масса виртуальной частицы m и расстояние R, на которое она переносит взаимодействие связаны соотношением

R = ћ/mc,

из которого следует, что чем больше масса виртуальной частицы, тем меньше радиус действия сил, обусловленных обменом этой частицей. Электромагнитное взаимодействие осуществляется с помощью обмена фотонами. Так как масса фотона равна нулю, радиус электромагнитного взаимодействия бесконечен.

Рис. 1. Испускание виртуального фотона электроном.

    На рис. 1 показан процесс испускания электроном виртуального фотона. Свободный электрон не может испустить или поглотить фотон, т.к. при этом не будут выполняться законы сохранения энергии и импульса. Это легко показать, рассматривая процесс поглощения фотона в системе координат, в которой электрон покоится после поглощения фотона. В этой системе импульсы электрона p и фотона k до поглощения равны по абсолютной величине и противоположны по направлению

|p| = |k|.

Рис. 2. Рассеяние электрона на электроне описывается как обмен виртуальным фотоном.

    Закон сохранения энергии

(p2c2 +m2c4)1/2 + c|k| = mc2

выполняется только в случае p = k = 0. То есть свободный электрон массы m не может испустить фотон. Однако виртуально процесс, изображенный на рис. 1, может происходить. На рис. 2 показано рассеяние электрона на электроне. Процесс описывается обменом виртуальным фотоном.     Слабое взаимодействие описывается как результат обмена W± и Z бозонами. На рис. 3 слева показано превращение протона в нейтрон под действием пучка антинейтрино. На рис. 3 справа показан процесс упругого рассеяния электронного антинейтрино на электроне, который происходит в результате обмена нейтральным Z бозоном.

Рис. 3. Слабое взаимодействие происходит в результате обмена W± и Z бозонами.

Переносчиками сильного взаимодействия внутри адронов являются 8 цветных глюонов (рис. 4). В результате сильного взаимодействия происходит изменение цвета кварка. Типы кварков при этом не изменяются.

Рис. 4. Сильное взаимодействие между кварками в адроне происходит в результате обмена цветными глюонами.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]