
- •Основные законы геометрической оптики. Полное внутреннее отражение. Принцип Ферма.
- •Зеркала, тонкие линзы, основные оптические приборы.
- •Фотометрические величины. Интенсивность, световой поток, поверхностная яркость, освещенность.
- •Принцип Гюйгенса. Когерентные волны. Интерференция волн. Оптическая разность хода.
- •П олосы равного наклона и равной толщины. Кольца Ньютона. Интерферометры Майкельсона и Фабри-Перо.
- •Дифракция Фраунгофера и дифракция Френеля. Принцип Гюйгенса-Френеля. Зоны Френеля.
- •Дифракция от круглого отверстия, круглого диска, щели.
- •Дифракционная решетка. Угловая дисперсия. Разрешающая сила.
- •Голография.
- •Поляризованный свет. Поляризатор. Степень поляризации. Закон Малюса. Поляризация при отражении и преломления. Закон Брюстера.
- •Поляризация при двойном лучепреломлении. Призма Николя. Вращение плоскости поляризации. Эффект Фарадея.
- •Дисперсия света. Групповая скорость электромагнитных волн. Элементарная электронная теория дисперсии.
- •Поглощение света. Закон Бугера-Ламберта. Спектры излучения и поглощения.
- •Рассеяние света. Закон Рэлея. Эффект Вавилова-Черенкова.
- •Тепловое излучение. Энергетическая светимость. Испускательная и поглощательная способности. Абсолютно черное тело. Закон Кирхгофа. Закон Стефана-Больцмана.
- •Закон Вина. Формула Рэлея-Джинса. Формула Планка.
- •Закон фотоэффекта. Ток насыщения. Формула Эйнштейна. Красная граница фотоэффекта. Фотоны. Опыт Боте. Эффект Комптона.
- •Закономерности атомных спектров. Модели атома Томсона и Резерфорда. Постулаты Бора. Атом водорода по Бору.
- •Гипотеза де-Бройля. Опыты по дифракции корпускулярных пучков. Соотношение неопределенностей Гейзенберга.
- •Волновая функция. Уравнение Шредингера. Стационарные состояния.
- •Частица в одномерной прямоугольной потенциальной яме. Прохождение частицы через потенциальный барьер.
- •Атом водорода. Потенциалы возбуждения и ионизации. Квантовые числа. Вырожденные состояния.
- •Ширина спектральных линий. Мультиплетность спектров. Спин электрона. Магнетон Бора.
- •Спин орбитальное взаимодействие. Эффект Зеемана. Принцип Паули. Расположение элементов в системе Менделеева.
- •Ионная и ковалентная связи атомов в молекуле. Энергия диссоциации. Полная энергия молекулы. Вращательные, колебательно-вращательные полосы.
- •В ынужденное излучение. Мазеры. Лазеры. Накачка метастабильных уровней. Свойства лазерного излучения.
- •Фазовое пространство. Функция распределения. Понятие о квантовой статистике Бозе-Эйнштейна и Ферми-Дирака.
- •Колебания кристаллической решетки. Теория Дебая теплоемкости кристаллов. Энергия нулевых колебаний.
- •Квантовая теория свободных электронов в металле. Уровень Ферми. Запрещенные зоны. Валентная зона. Зона проводимости.
- •Электропроводность металлов. Сверхпроводимость. Температурные зависимости проводимости.
- •Дырочная проводимость. Примесная проводимость. Запрещенные зоны. Валентная зона. Зона проводимости.
- •Работа выхода. Термоэлектронная эмиссия. Контактная разность потенциалов.
- •Контактные явления в полупроводниках.
- •Термоэлектрические явления.
- •Основные свойства атомного ядра.
- •Масса и энергия связи. Дефект массы. Деление тяжелых и синтез легких ядер.
- •Ядерные силы. Модели ядра. Мезоны.
- •Радиоактивность. Постоянная распада. Альфа, бета и гамма-излучения.
- •Альфа-распад. Бета-распад. Правила смещения.
- •Реакция деления ядра. Цепная реакция деления.
- •Космическое излучение. Типы взаимодействия элементарных частиц. Частицы и античастицы.
- •Классификация элементарных частиц. Кварки.
Принцип Гюйгенса. Когерентные волны. Интерференция волн. Оптическая разность хода.
Согласно волновой теории, развитой на основе аналогии оптических и акустических явлений, свет представляет собой упругую волну, распространяющуюся в особой среде — эфире. Эфир заполняет все мировое пространство, пронизывает все тела и обладает механическими свойствами — упругостью и плотностью. Согласно Гюйгенсу, большая скорость распространения света обусловлена особыми свойствами эфира.
Волновая теория основывается на принципе Гюйгенса: каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих воли дает положение волнового фронта в следующий момент времени. Напомним, что волновым фронтом называется геометрическое место точек, до которых доходят колебания к моменту времени t. Принцип Гюйгенса позволяет анализировать распространение света и вывести законы отражения и преломления.
Необходимым условием интерференции волн является их когерентность, т. е. согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов. Этому условию удовлетворяют монохроматические волны — неограниченные в пространстве волны одной определенной и строго постоянной частоты. Taк как ни один реальный источник не дает строго монохроматического света, то волны, излучаемые любыми независимыми источниками света, всегда некогерентны. Поэтому на опыте не наблюдается интерференция света от независимых источников, например от двух электрических лампочек.
При наложении двух (или нескольких) когерентных световых волн происходит пространственное перераспределение светового потока, в результате чего в одних местах возникают максимумы, а в других — минимумы интенсивности. Это явление называется интерференцией света.
Для получения когерентных световых волн применяют метод разделения волны, излучаемой одним источником, на две части, которые после прохождения разных оптических путей накладываются друг на друга, и наблюдается интерференционная картина.
Пусть разделение на две когерентные волны происходит в определенной точке О. До точки M, в которой наблюдается интерференционная картина, одна волна в среде с показателем преломления п1 прошла путь s1, вторая — в среде с показателем преломления n2 — путь s2. Если в точке О фаза колебаний равна t, то в точке М первая волна возбудит колебание A1cos(t–s1/v1), вторая волна — колебание A2cos(t–s2/v2), где v1=c/n1, v2=c/n2 — соответственно фазовая скорость первой и второй волны. Разность фаз колебаний, возбуждаемых волнами в точке М, равна
(учли, что /с
= 2/с
= 2/0,
где 0
— длина волны в вакууме). Произведение
геометрической длины s
пути световой волны в данной среде на
показатель n преломления
этой среды называется оптической
длиной пути L,
a
= L2 – L1
— разность оптических длин проходимых
волнами путей — называется оптической
разностью хода. Если оптическая
разность хода равна целому числу длин
волн в вакууме
(1)
то
= ±2т, и колебания,
возбуждаемые в точке М обеими
волнами, будут происходить в одинаковой
фазе. Следовательно, (1) является условием
интерференционного максимума.
Если оптическая разность хода
(2)
,то
= ±2(т+1), и
колебания, возбуждаемые в точке М
обеими волнами, будут происходить в
противофазе. Следовательно, (2) является
условием интерференционного минимума.