Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по физике.doc
Скачиваний:
26
Добавлен:
23.09.2019
Размер:
889.86 Кб
Скачать
  1. Контактные явления в полупроводниках.

Граница соприкосновения двух полупроводников, один из которых имеет электронную, а другой — дырочную проводимость, называется электронно-дырочным переходом (или p-n-переходом).

  1. Термоэлектрические явления.

Явление возбуждения термоэлектрического тока (явление Зеебека), а также тесно связанные с ним явления Пельте и Томсона называются термоэлектрическими явлениями.

1 . Явление Зеебека (1821). Немецкий физик Т. Зеебек (1770—1831) обнаружил, что в замкнутой цепи, состоящей из последовательно соединенных разнородных провод­ников, контакты между которыми имеют различную температуру, возникает элект­рический ток.

Явление Зеебека используется для измерения температуры. Для этого применяются термоэлементы, или термопары—датчики температур, состоящие из двух соединенных между собой разнородных металлических проводников. Если контакты (обычно спаи) проводников (проволок), образующих термопару, находятся при разных температурах, то в цепи возникает термоэлектродвижущая сила, которая зависит от разности температур контактов и природы применяемых материалов.

2 . Явление Пельтье (1834). Французский физик Ж. Пельтье (1785—1845) обнару­жил, что при прохождении через контакт двух различных проводников электрического тока в зависимости от его направления помимо джоулевой теплоты выделяется или поглощается дополнительная теплота. Таким образом, явление Пельтье является обратным по отношению к явлению Зеебека. В отличие от джоулевой теплоты, которая пропорциональна квадрату силы тока, теплота Пельтье пропорциональна первой степени силы тока и меняет знак при изменении направления тока.

3. Явление Томсона (1856). Вильям Томсон (Кельвин), исследуя термоэлектрические явления, пришел к заключению, подтвердив его экспериментально, что при прохожде­нии тока по неравномерно нагретому проводнику должно происходить дополнительное выделение (поглощение) теплоты, аналогичной теплоте Пельтье. Это явление получило название явления Томсона. Его можно объяснить следующим образом. Так как в более нагретой части проводника электроны имеют большую среднюю энергию, чем в менее нагретой, то, двигаясь в направлении убывания температуры, они отдают часть своей энергии решетке, в результате чего происходит выделение теплоты Томсона. Если же электроны движутся в сторону возрастания температуры, то они, наоборот, пополняют свою энергию за счет энергии решетки, в результате чего происходит поглощение теплоты Томсона.

  1. Основные свойства атомного ядра.

Э. Резерфорд, исследуя прохождение -частиц с энергией в несколько мегаэлектрон-вольт через тонкие пленки золота, пришел к выводу о том, что атом состоит из положительно заряженного ядра и окружающих его электронов. Проанали­зировав эти опыты, Резерфорд также показал, что атомные ядра имеют размеры примерно 10–14 — 10–15 м (линейные размеры атома примерно 10–10 м).

Атомное ядро состоит из элементарных частиц — протонов и нейтронов (протонно-нейтронная модель ядра была предложена российским физиком Д. Д. Иваненко (р. 1904), а впоследствии развита В. Гейзенбергом).

Протон (р) имеет положительный заряд, равный заряду электрона, и массу покоя тр=1,672610–27кг  1836 тe, где тe — масса электрона. Нейтрон (n) — нейтральная частица с массой покоя тп=1,674910–27кг 1839 тe. Протоны и нейтроны называют­ся нуклонами (от лат. nucleus — ядро). Общее число нуклонов в атомном ядре называ­ется массовым числом А.

Атомное ядро характеризуется зарядом Ze, где Z зарядовое число ядра, равное числу протонов в ядре и совпадающее с порядковым номером химического элемента в Периодической системе элементов Менделеева.

Ядро обозначается тем же символом, что и нейтральный атом: , где Х — символ химического элемента, Z атомный номер (число протонов в ядре), А — массовое число (число нуклонов в ядре).

Ядра с одинаковыми Z, но разными А (т. е. с разными числами нейтронов N=AZ) называются изотопами, а ядра с одинаковыми А, но разными Zизобарами. Например, водород (Z=1) имеет три изотопа: Н—протий (Z=1, N=0), Н—дейтерий (Z=1, N=1), Н — тритий (Z=1, N=2)

Радиус ядра задается эмпирической формулой где R0=(1,31,7)10–15 м.