
- •2. Операционный усилитель. Характеристики идеального оу. Обозначение на схемах.
- •2. Применение оу. Дифференциальный усилитель (вычитатель).
- •2. Применение оу. Инвертирующий усилитель.
- •1. Дешифратор. Применение.
- •2. Применение оу. Неинвертирующий усилитель.
- •1. Асинхронные счётчики.
- •2. Применение оу. Повторитель напряжения (Буферный усилитель) (5 билет продолжение)
- •1. Счетчик-определение. Классификация.
- •1 . Асинхронные счётчики.
- •2 . Применение оу. Интегратор.
- •1. Синхронные счетчики .
- •2. Применение оу. Дифференциатор.
- •1. Регистр. Классификация.
- •2. Применение оу. Компаратор.
- •1. Шифратор. Применение.
- •2. Типы цап.
- •1. Линейный трёхразрядный шифратор.
- •2. Характеристики цап.
- •1. Дешифратор. Применение.
- •2. Ацп. Применение.
- •1. Двухразрядный линейный дешифратор.
- •2. Типы ацп.
- •2. Характеристики ацп.
- •1. Мультиплексор из 4 в 1.
- •1. Демультиплексор на 4 входа.
- •2. Ацп прямого преобразования.
- •2. Интегрирующий ацп.
- •1. Озу. Принципиальная схема однокоординатного озу типа 4х1.
- •2. Ацп последовательного приближения.
- •2. Закон Ома. Законы Кирхгофа.
- •Первый закон Кирхгофа
- •Второй закон Кирхгофа
- •1. Счетчик-определение. Классификация.
- •2. Схема квантования.
- •1. Асинхронные счётчики.
- •2. Операционный усилитель. Характеристики идеального оу. Обозначение на схемах.
- •1. Синхронные счетчики.
- •2. Применение оу. Дифференциальный усилитель (вычитатель).
- •1. Шифратор. Применение.
- •2. Применение оу. Инвертирующий усилитель.
- •1. Счетчик-определение. Классификация.
- •2. Применение оу. Интегратор.
- •1. Асинхронные счётчики.
- •2. Типы цап.
- •2 . Типы цап.
- •2. Закон Ома. Законы Кирхгофа.
- •Первый закон Кирхгофа
- •Второй закон Кирхгофа
2. Типы цап.
Наиболее общие типы электронных ЦАП:
широтно-импульсный модулятор — простейший тип ЦАП. Стабильный источник тока или напряжения периодически включается на время, пропорциональное преобразуемому цифровому коду, далее полученная импульсная последовательность фильтруется аналоговым фильтром низких частот. Такой способ часто используется для управления скоростью электромоторов, а также становится популярным в Hi-Fi (класс аппаратуры) аудиотехнике;
ЦАП передискретизации, такие как дельта-сигма ЦАП, основаны на изменяемой плотности импульсов. Передискретизация позволяет использовать ЦАП с меньшей разрядностью для достижения большей разрядности итогового преобразования; часто дельта-сигма ЦАП строится на основе простейшего однобитного ЦАП, который является практически линейным. На ЦАП малой разрядности поступает импульсный сигнал с модулированной плотностью импульсов (c постоянной длительностью импульса, но с изменяемой скважностью), создаваемый с использованием отрицательной обратной связи. Отрицательная обратная связь выступает в роли фильтра высоких частот для шума квантования. Большинство ЦАП большой разрядности (более 16 бит) построены на этом принципе вследствие его высокой линейности и низкой стоимости. Быстродействие дельта-сигма ЦАП достигает сотни тысяч отсчетов в секунду, разрядность — до 24 бит. Для генерации сигнала с модулированной плотностью импульсов может быть использован простой дельта-сигма модулятор первого порядка или более высокого порядка как MASH (англ. Multi stage noise SHaping). С увеличением частоты передискретизации смягчаются требования, предъявляемые к выходному фильтру низких частот и улучшается подавление шума квантования;
взвешивающий ЦАП, в котором каждому биту преобразуемого двоичного кода соответствует резистор или источник тока, подключенный на общую точку суммирования. Сила тока источника (проводимость резистора) пропорциональна весу бита, которому он соответствует. Таким образом, все ненулевые биты кода суммируются с весом. Взвешивающий метод один из самых быстрых, но ему свойственна низкая точность из-за необходимости наличия набора множества различных прецизионных источников или резисторов. По этой причине взвешивающие ЦАП имеют разрядность не более восьми бит;
цепная R-2R схема является вариацией взвешивающего ЦАП. В R-2R ЦАП взвешенные значения создаются в специальной схеме, состоящей из резисторов с сопротивлениями R и 2R. Это позволяет существенно улучшить точность по сравнению с обычным взвешивающим ЦАП, так как сравнительно просто изготовить набор прецизионных элементов с одинаковыми параметрами. Недостатком метода является более низкая скорость вследствие паразитной емкости;
сегментный ЦАП содержит по одному источнику тока или резистору на каждое возможное значение выходного сигнала. Так, например, восьмибитный ЦАП этого типа содержит 255 сегментов, а 16-битный — 65535. Теоретически, сегментные ЦАП имеют самое высокое быстродействие, так как для преобразования достаточно замкнуть один ключ, соответствующий входному коду;
гибридные ЦАП используют комбинацию перечисленных выше способов. Большинство микросхем ЦАП относится к этому типу; выбор конкретного набора способов является компромиссом между быстродействием, точностью и стоимостью ЦАП.
3. Формула для расчета выходного напряжения на ОУ, работающем в режиме инвертора, имеем:
Подставим в это выражение условие, получим:
№_____28______
1. 4-х разрядный параллельный однофазный регистр на основе D-триггеров.
Регистром называется устройство, предназначенное для записи и хранения дискретного «слова» - двоичного числа или другой кодовой комбинации, а также для преобразований кодов чисел, поразрядное логическое сложение и умножение двух чисел и т.д.
Основные элементы регистра – двоичные ячейки, в качестве которых применяются триггеры. Количество двоичных ячеек определяется количеством двоичных разрядов слов (длиной слова), на которую рассчитан регистр. Обычно регистры выполняют на основе RS, D, JK триггеров. Регистр – один из основных элементов цифровой ЭВМ и многих других устройств вычислительной техники. Конкретные регистры обычно являются специализированными и реализуют лишь некоторые операции.
D – входы для записи данных, С – разрешение на запись данных (как правило, запись производится не побитно или потетрадно – по 4 бита, поэтому все входы соединины между собой), Q – выходы для чтения данных.
В отличии от записи данных, где запись производится только при наличии 1 на входе «разрешение на запись» считывание возможно в любой момент времени. Также возможно считывание по 1 биту и предусмотрены выходы для считывания инвертированного сигнала (выходы над Q1, Q2, Q3, Q4).