
- •1) Контактная разность потенциалов, термоэдс, термобатарея ,применение. Термоэлектронная эмиссия.
- •2) Электролиты, электрическая диссоциация. Ток в электролитах. Электролиз. Первый закон электролиза. Его объяснение. Электрохимический эквивалент вещества. Техническое применение электролиза.
- •3) Проводимость газов. Ионизация газов. Рекомбинация. График зависимости тока в гзах от напряжения. Ток насыщения. Ударная ионизация.
- •4) Ток в вакууме. Электрический Ток в Вакууме
- •5) Ток в полупроводниках. Электрический Ток в Полупроводниках
- •6) Магнитное поле как вид материи. Вокруг чего существует магнитное поле? На что оно действует?
- •7) Линии индукции магнитного поля (магнитные силовые линии).
- •8) Сила Ампера. Индукция магнитного поля. Единицы измерения.
- •9) Сила Лоренца. Использование силы Лоренца в технике и науке.
- •10) Вещество и магнитное поле. Их свойства. Магнитная проницаемость.
- •11) Явление электромагнитной индукции. Закон электромагнитной индукции. Правила Ленца.
- •12) Явление самоиндукции, как частный случай электромагнитной индукции. Эдс самоиндукции, применение этого явления.
- •13) Индуктивность проводника. Единицы измерения.
- •14) Колебания. Условные колебания. Характеристики колебаний.
- •15) Свободные и вынужденные колебания. Механический резонанс.
- •16) Гармонические колебания. Фаза колебаний.
- •17) Математический маятник. Пружинный маятник.
- •18) Волны. Поперечные и продольные.
- •Конец формы
- •19) Интерференция волн. Дифракция волн.
- •21) Активное, индуктивное, емкостное сопротивление цепи переменного тока.
- •22) Трансформатор. Устройство и принцип действия. Коэффициент трансформации.
- •23) Электромагнитное поле и гипотеза Максвелла. Электромагнитные волны, скорость их распространения, свойства электромагнитных волн.
- •24) Получение свободных электромагнитных колебаний при помощи колебательного контура. Формула Томпсона.
- •25) Вынужденные электромагнитные колебания, их получение. Электрический резонанс. Применение.
- •28) Современное представление о природе света, скорость света. Оптическая плотность среды.
- •29) Преломление света. Закон преломления света. Физический смысл преломления.
- •36) Квантовая теория света. Энергия фотона, его массы. Формула Эйнштейна для фотоэффекта.
- •37) Реакция деления ядра урана. Цепная реакция, мирное использование атомной энергии. Термоядерная реакция.
- •38) Открытие нейтрона. Состав атомного ядра. Ядерные силы. Ядерная энергия связи.
- •39) Опыт и явление, подтверждающее сложность атома. Модель атома резерфорда.
- •40) Постулаты бора. Излучение и поглощение атомом энергии. Строение атома водорода.
- •41) Радиоактивность, ее свойства. Состав радиоактивных излучений.
3) Проводимость газов. Ионизация газов. Рекомбинация. График зависимости тока в гзах от напряжения. Ток насыщения. Ударная ионизация.
Проводимость газов- В естественном состоянии газы не проводят электрического тока, т.е. являются диэлектриками. В этом легко убедиться с помощью простого тока, если цепь прервана воздушным промежутком.
Ионизация газа показывает, что в газах под влиянием высокой температуры и различных излучений появляются заряженные частицы. Они возникают потому, что от атомов газа отщепляется один или несколько электронов, в результате чего вместо нейтрального атома возникают положительный ион и электроны.
Рекомбинация-процесс обратный ионизации.
.График зависимости тока в газах от напряжения.
Ток насыщения - это максимальный ток, который можно получить с катода при данной его температуре.
Ударная ионизация — физическая модель, описывающая ионизацию атома при ударе о него электрона (или другой заряженной частицы — например, позитрона, иона или «дырки»). Явление может наблюдаться как в газах, так и в твёрдых телах (в частности, в полупроводниках).
4) Ток в вакууме. Электрический Ток в Вакууме
Если два электрода поместить в герметичный сосуд и удалить из сосуда воздух, то электрический ток в вакууме не возникает - нет носителей электрического тока. Американский ученый Т. А. Эдисон (1847-1931) в 1879 г. обнаружил, что в вакуумной стеклянной колбе может возникнуть электрический ток, если один из находящихся в ней электродов нагреть до высокой температуры. Явление испускания свободных электронов с поверхности нагретых тел называется термоэлектронной эмиссией. Работа, которую нужно совершить для освобождения электрона с поверхности тела, называется работой выхода. Явление термоэлектронной эмиссии объясняется тем, что при повышении температуры тела увеличивается кинетическая энергия некоторой части электронов в веществе. Если кинетическая энергия электрона превысит работу выхода, то он может преодолеть действие сил притяжения со стороны положительных ионов и выйти с поверхности тела в вакууме. На явлении термоэлектронной эмиссии основана работа различных электронных ламп.
5) Ток в полупроводниках. Электрический Ток в Полупроводниках
Полупроводниками назвали класс веществ, у которых с повышением температуры увеличивается проводимость, уменьшается электрическое сопротивление. Этим полупроводники принципиально отличаются от металлов.
Типичными полупроводниками являются кристаллы германия и кремния, в которых атомы объединены кова-лентной связью. При любых температурах в полупроводниках имеются свободные электроны. Свободные электроны под действием внешнего электрического поля могут перемещаться в кристалле, создавая электронный ток проводимости. Удаление электрона с внешней оболочки одного из атомов кристаллической решетки приводит к превращению этого атома в положительный ион. Этот ион может нейтрализоваться, захватив электрон у одного из соседних атомов. Далее, в результате переходов электронов от атомов к положительным ионам происходит процесс хаотического перемещения в кристалле места с недостающим электроном. Внешне этот процесс воспринимается как перемещение положительного электрического заряда, называемого дыркой.
При помещении кристалла в электрическое поле возникает упорядоченное движение дырок - дырочный ток проводимости.
В идеальном полупроводниковом кристалле электрический ток создается движением равного количества отрицательно заряженных электронов и положительно заряженных дырок. Проводимость в идеальных полупроводниках называется собственной проводимостью.
Свойства полупроводников сильно зависят от содержания примесей. Примеси бывают двух типов - донорные и акцепторные.
Примеси, отдающие электроны и создающие электронную проводимость, называютсядонорными (примеси, имеющие валентность больше, чем у основного полупроводника). Полупроводники, в которых концентрация электронов превышает концентрацию дырок, называют полупроводниками n-типа.
Примеси, захватывающие электроны и создающие тем самым подвижные дырки, не увеличивая при этом число электронов проводимости, называют акцепторными (примеси имеющие валентность меньше, чем у основного полупроводника).
При низких температурах основными носителями тока в полупроводниковом кристалле с акцепторной примесью являются дырки, а не основными носителями - электроны. Полупроводники, в которых концентрация дырок превышает концентрацию электронов проводимости, называют дырочными полупроводниками или полупроводниками р-типа. Рассмотрим контакт двух полупроводников с различными типами проводимости.