
- •1) § В.1. Назначение электрических машин и трансформаторов
- •Вопрос 2
- •Вопрос 33333333333333333333333333333333333333333333333333333333333333333
- •Вопрос444444444444444444444
- •§ 1.2. Принцип действия трансформаторов
- •§1.3. Устройство трансформаторов
- •Вопрос555555555555555555555555555555555555555555
- •§ 1.4. Уравнения напряжений трансформатора
- •§ 1.5. Уравнения магнитодвижущих сил и токов
- •Вопрос66666666666666666666666666666666666666666666666666666
- •§ 1.6. Приведение параметров вторичной обмотки и схема замещения приведенного трансформатора
- •Вопрос77777777777777777777777777777777
- •Вопрос88888888888888888888888888888888888888888888888888888888
- •§ 1.7. Векторная диаграмма трансформатора
- •§ 1.8. Трансформирование
- •§ 1.8. Трансформирование трехфазного тока и схемы соединения обмоток трехфазных трансформаторов
- •Глава 2 • Группы соединения обмоток и параллельная работа трансформаторов
- •§ 2.1. Группы соединения обмоток
- •§ 2.2. Параллельная работа трансформаторов
- •Вопрос1111111111111111111111111111111111111111111111111111111111111111111111111111
- •Глава 5. Трансформаторные устройства специального назначения
- •§ 5.1. Трансформаторы с плавным регулированием напряжения
- •§ 5.2. Трансформаторы для выпрямительных установок
- •При выборе трансфор§ 5.2. Трансформаторы для выпрямительных установок
- •Вопрос121212121212121212121212121212121212112121212121212121212121212
- •Глава 24
- •§ 24.1. Принцип действия генератора и двигателя постоянного тока
- •§ 24.2. Устройство коллекторной машины постоянного тока
- •Вопрос13131313133131313131313131331133131313131
- •Глава 25
- •§ 25.1. Петлевые обмотки якоря
- •Вопрос141414141414141414141414141414
- •Глава 26
- •§ 26.1. Магнитная цепь машины постоянного тока
- •Вопрос15151515151515151515151515151515151515515151515151515151515151
- •§ 26.2. Реакция якоря машины постоянного тока
- •26.4. Магнитное поле машины и распределение магнитной индукции
- •Вопрос1616161616161616161616161616161616
- •§ 26.5. Способы возбуждения машин постоянного тока
- •4.3. Коммутация в коллекторных машинах постоянного тока
- •Вопрос181818181818181818181818818181818181818181818
- •Глава 28
- •§ 28.1. Основные понятия
- •Вопрос1919191919191919191919191919191919191919
- •Глава 29
- •§ 29.1. Основные понятия
- •202020202020202020Вопрос
- •§ 29.3. Двигатель параллельного возбуждения
- •§ 29.6. Двигатель последовательного возбуждения
- •§ 29.7. Двигатель смешанного возбуждения
- •§ 29.8. Потери и коэффициент полезного действия коллекторной машины постоянного тока
- •Вопрос323232323232323
- •2.3.2. Регулирование скорости вращения асинхронных двигателей
Вопрос1919191919191919191919191919191919191919
Глава 29
§ 29.1. Основные понятия
Коллекторные машины обладают свойством обратимости, т. е. они могут работать как в режиме генератора, так и в режиме двигателя. Поэтому если машину постоянного тока подключить к источнику энергии постоянного тока, то в обмотке возбуждения и в обмотке якоря машины появятся токи. Взаимодействие тока якоря с полем возбуждения создает на якоре электромагнитный момент М, который является не тормозящим, как это имело место в генераторе, а вращающим.
Под действием электромагнитного момента якоря машина начнет вращаться, т. е. машина будет работать в режиме двигателя, потребляя из сети электрическую энергию и преобразуя ее в механическую. В процессе работы двигателя его якорь вращается в магнитном поле. В обмотке якоря индуцируется ЭДС , направление которой можно определить по правилу «правой руки». По своей природе она не отличается от ЭДС, наводимой в обмотке якоря генератора. В двигателе же ЭДС направлена против тока , и поэтому ее называют противоэлектродвижущей силой (противо-ЭДС) якоря (рис. 29.1).
Рис. 29.1. Направление противо-ЭДС в обмотке якоря двигателя
Для двигателя, работающего с постоянной частотой вращения,
.
(29.1)
Из (29.1) следует, что подведенное к двигателю напряжение уравновешивается противо-ЭДС обмотки якоря и падением напряжения в цепи якоря. На основании (29.1) ток якоря
.
(29.2)
Умножив обе части уравнения (29.1) на ток якоря , получим уравнение мощности для цепи якоря:
,
(29.3)
где
— мощность в цепи обмотки якоря;
— мощность электрических
потерь в цепи якоря.
Для
выяснения сущности выражения
проделаем
следующее
преобразование:
,
или
.
Но,
согласно (25.24),
тогда
,
(29.4)
где
— угловая частота вращения
якоря;
—
электромагнитная
мощность двигателя.
Следовательно, выражение представляет собой электромагнитную мощность двигателя.
Преобразовав выражение (29.3) с учетом (29.4), получим
.
Анализ
этого уравнения показывает, что с
увеличением нагрузки
на вал двигателя, т. е. с увеличением
электромагнитного момента
М,
возрастает
мощность в цепи обмотки якоря
,
т. е. мощность
на входе двигателя. Но так как напряжение,
подводимое к
двигателю, поддерживается неизменным
,
то увеличение
нагрузки двигателя сопровождается
ростом тока в обмотке якоря
.
В зависимости от способа возбуждения двигатели постоянного тока, так же как и генераторы, разделяют на двигатели с возбуждением от постоянных магнитов (магнитоэлектрические) и с электромагнитным возбуждением. Последние в соответствии со схемой включения обмотки возбуждения относительно обмотки якоря подразделяют на двигатели параллельного (шунтовые), последовательного (сериесные) и смешанного (компаундные) возбуждения.
В
соответствии с формулой ЭДС
частота
вращения двигателя
(об/мин)
.
Подставив
значение
из
(29.1), получим (об/мин)
,
(29.5)
т.
е. частота
вращения двигателя прямо пропорциональна
напряжению и обратно пропорциональна
магнитному потоку возбуждения.
Физически
это объясняется тем, что повышение
напряжения
U
или
уменьшение потока Ф
вызывает увеличение разности
;
это,
в свою очередь, ведет к росту тока
[см. (29.2)].
Вследствие этого возросший ток повышает
вращающий момент,
и если при этом нагрузочный момент
остается неизменным,
то частота вращения двигателя
увеличивается.
Из
(29.5) следует, что регулировать частоту
вращения двигателя можно изменением
либо напряжения U,
подводимого
к двигателю,
либо основного магнитного потока Ф,
либо электрического
сопротивления в цепи якоря
.
Направление вращения якоря зависит от направлений магнитного потока возбуждения Ф и тока в обмотке якоря. Поэтому, изменив направление какой-либо из указанных величин, можно изменить направление вращения якоря. Следует иметь в виду, что переключение общих зажимов схемы у рубильника не дает изменения направления вращения якоря, так как при этом одновременно изменяется направление тока и в обмотке якоря, и в обмотке возбуждения.