
- •Оглавление
- •1.Топологии локальных сетей. Среды передачи.
- •2.Методы кодирования информации
- •3.Методы доступа в звезде и шине.
- •4. Методы доступа в кольце.
- •5.Функции Сетевых адаптеров
- •6. Трансиверы, Повторители, Концентраторы.
- •7.Мосты, Маршрутизаторы, Шлюзы.
- •8. Аппаратура сети Ethernet. Расчет максимальной длины сети
- •9.Типы лвс Ethernet.
- •10.Аппаратура сети Fast Ethernet
- •11.Аппаратура сети Gigabit Ethernet.
- •12.Аппаратура сети Token Ring фирмы ibm.
- •13.Аппаратура сети Arcnet.
- •14.Аппаратура сети fddi
- •15. Аппаратура сети 100vg-AnyLan
- •16.Семиуровневая модель взаимодействия открытых ис
- •17.Прикладной уровень модели osi. Уровень представления.
- •18.Уровень представления Преобразование из кодов в коды сети.
- •19.Сеансовый уровень osi.
- •20.Транспортный уровень osi
- •21.Процедуры протокола
- •22.Сетевой уровень osi
- •23.Канальный уровень. Протоколы канального уровня.
- •24.Каналы т1/е1.
- •25.Кадровая синхронизация
- •26.Сети isdn
- •27.Сети Frame Relay
- •28.Сети атм
- •30.Сеть интернет
- •31.Протокол ip. Заголовок.
- •32.Протокол ip V.6.0.
- •33.Протокол tcp
- •34. Протокол udp
- •35.Маршрутизация. Общие понятия.
- •36.Протокол rip
- •37.Протокол ospf
- •38.Функции, состав и назначение маршрутизатора
- •39.Уровень управления информационным каналом. Bsc.
- •40.Протокол hdlc
- •41.Типы станций hdlc режимы работы и процедуры
- •42.Сети атм. Категории услуг. Атм над технологией sdh. Применение.
- •43.Стек протокола tcp/ip (1, 2).
- •44.Процедуры протокола tcp
- •45.. Протоколы политики маршрутизации egp, bgp
- •46.Протокол pnni. Протоколы маршр запроса и Сигнал-ции
- •47.Модель атм. Маршрутизация в атм.
- •48.Протокол hdlc.
- •49.Типы hdlc. Режимы работы и процедуры.
- •50.Протокол mpls.
- •51.Удлённый доступ к сети. Физич. И канальный уровни модемов.
- •52.Классификация модемов.
- •53.Осн. Протоколы модуляции.
- •54.. Недостатки традиционных ip-технологий.
- •55.Ускоренная маршрутизация в сетях:
- •56.Качество обслуживания в сетях. Параметры качества. Требования прилож.
- •57.. Служба QoS.
- •58.Протокол rsvp.
- •59. Комбинирование протоколов QoS.
- •60.Механизмы профилирования и форми-рования трафика.
- •61.Протоколы сигнализации QoS
- •62.Узкополосная сеть isdn
- •63.Сеть Frame Relay
- •64.Общая характеристика протоколов QoS.
- •65.Сети атм. Принципы, интерфейсы и форматы.
- •66.Управления качеством обслуживания. МеХанизмы управления качеством обслуживания
- •67.Теоретико- множественная модель QoS
27.Сети Frame Relay
Сети, использующие протоколы Х.25, оказались надежными, но недостаточно высокоскоростными. В связи с этим были предложены модификации, ориентированные на очень высокие скорости передачи – это, в частности, сети Frame Relay и AТМ.
Родоначальником технологии Frame Relay – ретрансляции кадров – была в начале 90-х годов американская компания WILTEL, которая имела обширную сеть оптоволоконных линий, проложенных вдоль железных дорог. Технология Frame Relay в отличие от Х.25 позволила обеспечить скорости передачи, совместимые с каналами Т1 (1,5 Мбит/с) и ТЗ (45 Мбит/с), тогда как у Х.25 это была обычно скорость 64 Кбит/с.
Формат кадра Суть этой технологии заключается в отказе от 3-его(сетевого) уровня Х.25. Ограничиваются использованием 2-го (канального) уровня, где передача ведется кадрами. Видоизменяется только заголовок кадра:
Заголовок кадра Frame Relay содержит:
• 10-битовое поле DLCI– идентификатора канала передачи данных. Это поле используется маршрутизаторами для нахождения узла назначения, т.е. это информация для ретрансляции кадра.
• Из остальных шести бит заголовка:
• 3 бита выполняют роль флагов перегрузки;
• 1 бит – позволяет снизить приоритет кадра (называется битом DE);
• 2 бита – зарезервировано.
Скорость передачи
Скорость передачи согласуется с провайдером в виде трех параметров:
- CIR– согласованная скорость передачи;
- Bс – согласованная величина расширения трафика;
- Be – предельная величина расширения трафика.
Трафик объемом Be может приниматься сетью только ограниченный промежуток времени.
Передача графика объемом Вс допускается, только если загрузка сети в среднем не превысит согласованного значения CIR.
В случае превышения нагрузки пакет может быть либо отброшен маршрутизатором, или же в нем устанавливается в «1» бит DE (снижения приоритета), а и этом случае такой пакет разрешается при необходимости уничтожить любому следующему но пути следования маршрутизатору.
Типы каналов
Технология Frame Relay может работать на двух типах каналов:
- PVC – постоянный виртуальный канал;
- SVC– коммутируемый виртуальный канал.
Каналы PVC определяются на этапе конфигурации системы и гарантируют, что пакеты всегда будут доставляться по одному и тому же маршруту. Каналы SVC устанавливаются каждый раз в начале передачи (на этапе установления соединения), что позволяет избегать неисправных участков сети.
Зашита от ошибок
В сети Frame Relay производится проверка правильности кадра (с помощью анализа поля FCS) и, если обнаружены ошибки, кадр стирается. Однако повторная передача таких стертых кадров при этом не запрашивается. Считается, что за сборку сообщения и запрос недоставленных кадров должен отвечать протокол более высокого уровня – транспортный (отвечающий за межконцевую доставку). Таким образом эти сети ориентированы на применение высококачественных оптоволоконных каналов, в которых ошибки достаточно редки, а поэтому низка и вероятность повторных передач пакета.
28.Сети атм
Сети ATM были разработаны в качестве еще одной альтернативы сетям Х.25. Скорость передачи в этой сети находится и диапазоне от 25,5 Мбит/с до 2,488 Гбит/с. В качестве среды передачи могут использоваться различные носители, начиная с неэкранированной витой пары UTР класса 3 вплоть до оптоволоконных каналов.
Эта технология известна также под названием Fast Packet Switching –быстрая коммутация пакетов.
Высокие скорости передачи обеспечиваются за счет:
1. Фиксированного размера кадра – 53 байта
2. Отсутствия каких-либо мер по обеспечению правильности передачи. Эта задача переносится на более высокие протокольные уровни (транспортный).
Технология ATM относится по концепции OSI ко второму (канальному) уровню. Кадры в ATM называются ячейками (cell). Формат такой ячейки показан на левом рисунке.
Заголовок ячейки (5 байт) содержит:
- идентификатор виртуального пути – VPI (Virtual Path Identifier);
- идентификатор виртуального канала – VCI (Virtual Channel Identifier);
- идентификатор типа данных (3 бита);
- поле приоритета потери ячейки (1 бит);
- поле контроля ошибок в заголовке (8 бит) – это сумма по mod 2 байтов заголовка. Протоколы более высокого уровня разрезают свои сообщения на сегменты
по 48 байт и помещают их в поле информации ячейки.
Технология ATM поддерживает 2 типа каналов (аналогично сетям Frame
Relay):
• PVC – постоянные виртуальные каналы;
• SVC– коммутируемые виртуальные каналы.
На канальном уровне ATM выделяются 2 подуровня (см. рис вверху справа): непосредственно уровень ATM и уровень адаптации ATM.
Уровень адаптации ATM (ATM Adaptation Layer) – AAL – реализует один из
пяти режимов передачи:
AAL1 – характеризуется постоянной скоростью передачи (CBR) и синхронным трафиком. Ориентирован па передачу речи и видеоизображений.
AAL2 – тоже поддерживает синхронную передачу, но использует переменную битовую скорость (VDR). Oн пока, к сожалению, еще не реализован.
AAL3/AAL4 (объединены в единый протокол) – ориентированы на переменную битовую скорость (VBR). Синхронизация не обеспечивается. AAL4 отличается тем, что не требует предварительного установления соединения.
AAL5 – аналогичен AAL3, только содержит меньший объем служебной инфы.
По протоколам AAL1 и AAL2 передаются порции по 48 байт информации (1 байт – служебный). Протоколы AAL3 – AAL5 предполагают передачу блоков (разрезанных на сегменты) размером до 65536 байт.
29.x25
Рекомендация X.25 описывает три уровня протоколов - физический, уровень звена передачи данных и сетевой. Физический уровень описывает уровни сигналов и логику взаимодействия на уровне физического интерфейса. Те из читателей, которым приходилось например подключать модем к последовательному порту персонального компьютера (интерфейс RS-232/V.24) имеют представление об этом уровне. Второй уровень (LAP/LAPB), с теми или иными модификациями, также достаточно широко представлен сейчас в оборудовании массового спроса: в оборудовании модемов, например, - протоколами группы MNP, отвечающими за защиту от ошибок при передаче информации по каналу связи, а также в локальных сетях на уровне LLC. Второй уровень протоколов отвечает за эффективную и надежную передачу данных в соединении "точка-точка", т.е. между соседними узлами сети X.25. Данным протоколом обеспечивается защита от ошибок при передаче между соседними узлами и управление потоком данных (если принимающая сторона не готова принимать данные, она извещает об этом передающую сторону, и та приостанавливает передачу). Кроме того, данный протокол содержит параметры, меняя значения которых, можно получить оптимальный по скорости передачи режим в зависимости от протяженности канала между двумя точками (времени задержки в канале) и качества канала (вероятности искажения информации при передачи). Для реализации всех указанных выше функций в протоколах второго уровня вводится понятие "кадра" ("frame"). Кадром называется порция информации (битов), организованная определенным образом. Начинает кадр флаг, т.е. последовательность битов строго определенного вида, являющаяся разделителем между кадрами. Затем идет поле адреса, которая в случае двухточечного соединения сводится к адресу "А" или адресу "B". Далее идут поле типа кадра, которое указывает, несет ли кадр в себе информацию, либо является чисто служебным, т.е. например тормозит поток информации, либо извещает передающую сторону о приеме/неприеме предыдущего кадра. В кадре имеется также поле номера кадра. Кадры нумеруются циклически. Это означает, что при достижении определенного порогового значения, нумерация опять начинается с нуля. И наконец заканчивается кадр проверочной последовательностью. Последовательность подсчитывается по определенным правилам при передаче кадра. По этой последовательности на приеме происходит поверка, не произошло ли искажения информации при передаче кадра. При настройке параметров протокола к физическим характеристикам линии можно менять длину кадра. Чем короче кадр, тем меньше вероятность того, что он будет искажен при передаче. Однако если линия хорошего качества, то лучше работать более длинными информационными кадрами, т.к. уменьшается процент избыточной информации, передаваемой по каналу (флаг, служебные поля кадра). Кроме того, можно менять число кадров которое передающая сторона посылает, не ожидая подтверждения от принимающей стороны.
Этот параметр связан с т.н. "модулем нумерации", т.е. значением порога, достигнув которого нумерация снова начинается с нуля. Это поле может быть равно 8 (для тех каналов, задержка передачи информации в которых не слишком велика) либо 128 (для спутниковых каналов например, когда задержка при передаче информации по каналу велика). И наконец, третий уровень протоколов - "сетевой". Этот уровень наиболее интересен в контексте обсуждения сетей X.25, так как именно он определяет в первую очередь специфику этих сетей.
Функционально данный протокол отвечает в первую очередь за маршрутизацию в сети передачи данных X.25, за доведение информации от "точки входа" в сеть до "точки выхода" из нее. На своем уровне протокол третьего уровня также структурирует информацию, т.е. разбивает ее на "порции". На третьем уровне порция информации называется "пакетом" ("packet"). Структура пакета во многом аналогична структуре кадра. В пакете имеется свой модуль нумерации, свои поля адреса, типа пакета, своя контрольная последовательность. При передаче пакет помещается в поле данных информационных кадров (кадров второго уровня). Функционально поля пакета отличаются от соответствующих полей кадра. В первую очередь это касается поля адреса, которое в пакете состоит из 15 цифр. Это поле пакета должно обеспечивать идентификацию абонентов в рамках всех сетей пакетной коммутации по всему миру