Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Логика. Ответы.doc
Скачиваний:
14
Добавлен:
23.09.2019
Размер:
307.71 Кб
Скачать

21. Язык логики предикатов

Логика предикатов – основной раздел современной логики, в котором описываются выводы, учитывающие внутреннюю (субъектно-предикатную) структуру высказываний.

Логика предикатов является расширением логики высказываний: все законы логики высказываний являются также законами логики предикатов, но не наоборот. В этом смысле логика высказываний более фундаментальна, чем логика предикатов.

Предикат – это языковое выражение, обозначающее какое-то свойство или отношение. Предикат, указывающий на свойство отдельного предмета, например, «быть зелёным», называется одноместным. Предикат, обозначающий отношение, называется двухместным, трехместным и т.д. в зависимости от числа членов данного отношения. Например, «любит» – двухместный предикат, «находится между» – трехместный.

В современной логике предикация рассматривается как частный случай функциональной зависимости. Предикатами называются функции, значениями которых служат высказывания. Например, выражение «…есть зелёный» (или «х есть зелёный») является функцией от одной переменной, «… любит… « («х любит у») – функция от двух переменных и т.д. Эти выражения превращаются в высказывания при соответствующей подстановке имён вместо переменных.

В логике предикатов – в дополнение к средствам логики высказываний – вводятся логические операторы

(«для всех») и

Запись (

x) Р(х) означает «Всякий х обладает свойством Р», (

х) Р(х)

– «Некоторые х обладают свойством Р», (

x ) Q(x, у)

– «Существует х, находящийся в отношении Q с у » и т.п.

Формула логики предикатов называется общезначимой, если она истинна в каждой интерпретации, в каждом приписывании содержательного смысла входящим в неё символам. Тавтология логики высказываний является частным случаем общезначимой формулы. В логике предикатов, в отличие от логики высказываний, нет эффективной процедуры, позволяющей для произвольно взятой формулы решить, является ли она общезначимой или нет.

21. Язык логики предикатов.

Рассмотрим язык логики предикатов. В его алфавите следующие символы: 1) p, q, r, s, p1, … - пропозициональные переменные (символы для предложений); 2) a, b, c, d, a1, … - индивидные константы (символы для единичных имен); 3) x, y, z, x1, … - индивидные переменные (символы для общих имен); 4) P, Q, R, S, P1, … - предикаторы (символы для признаков, а также свойств и отношений); 5) (знак отрицания, читается: "не" или "неверно, что"), (знак конъюнкции, т.е. соединения, читается: "и"), (знак нестрогой, или простой, дизъюнкции, т.е. нестрогого, или простого, разделения, читается: "или"), (знак строгой дизъюнкции, читается: "или …, или"), (знак импликации, читается: "если …, то"), (знак эквивалентности, читается: "если и только если …, то"), (квантор всеобщности, читается: "все", "всякий", "любой"), (квантор существования, читается: "существует такой …, что" или "некоторые") - логические символы; 6) (, ) (скобки), , (запятая) - служебные символы. Таким образом, в алфавите представлены символы для основных семантических категорий. Строгий смысл знака отрицания и знаков логических связок (конъюнкции, дизъюнкции, импликации и эквивалентности) задают с помощью таблиц истинности. Если А и В - высказывания, 0 - ложь, а 1 - истина, в двузначной логике, т.е. в такой логике, где высказывание может быть либо ложным, либо истинным, а третьего не дано, эти таблицы имеют следующий вид:

A

A

0 1

1 0

A

В

A В

A В

A В

A В

0 0 1 1

0 1 0 1

0 0 0 1

0 1 1 1

1 1 0 1

1 0 0 1

Отметим, что представленные в таблицах логические символы различают по силе связывания, в порядке убывания которой они выстраиваются так: , , , , . Учет силы связывания позволяет сократить количество скобок в логических формулах. Пусть нам нужно исследовать на истинность формулу (p q) r ("если р или q, то r"). Так как дизъюнкция сильнее импликации, мы можем убрать скобки: p q r. Читается полученная формула так же, как исходная. Иногда скобки убирать не следует. Например, в формуле (p q) r ("если р, то q, или r") р и q связаны сильнее, чем q и r, а если убрать скобки, соотношение станет обратным.

Логические формулы - это предложения искусственного языка символической (математической), т.е. современной формальной, логики. В них могут входить только символы алфавита, а записывать эти формулы, так же как и формулы математики, следует по правилам синтаксиса.

Определение правильно построенной формулы (ППФ) языка логики предикатов дается в четыре шага: 1) пропозициональная переменная является ППФ; 2) выражение вида A(t1, t2, …, tn), где A - предикатор, а tk - произвольный индивидный символ из данной в скобках последовательности, является ППФ; 3) если В и С - ППФ, а - индивидная переменная, то выражения вида В, В С, В С, В С, В С, В С, В, В - ППФ; 4) ничто иное не является ППФ.

Видно, что определение дано очень строго, и это не случайно: выше мы отмечали, что строгость - отличительное свойство искусственных языков.

Теперь приведем примеры формул языка логики предикатов. Возьмем пословицу "Язык до Киева доведет". Легче всего написать формулу для этого высказывания, используя пропозициональную переменную. Получится очень просто: р. Но по второму пункту определения ППФ мы можем построить более длинное предложение на языке логики предикатов: xP(x), где х - язык, Р - быть способным довести до Киева. Читается это предложение так: "Для любого х Р от х". Если мы учтем, что признак "быть способным довести до Киева" содержит двухместное отношение, то формула выйдет еще длиннее: xP(x, a), где х - язык, а - Киев, Р - быть способным довести до (чего-либо). Что выражает любая логическая формула? Она выражает логическую форму данного высказывания, т.е. форму абстрактной мысли, которая в нем заключена. Эта форма предстает в искусственных языках логики в удобном для логического анализа виде: кратко и точно.

Рассмотрим на примере, как, анализируя с помощью таблиц истинности логическую формулу сложного высказывания, выявляют условия его истинности, или, другими словами, как проводится табличное исследование логической формы высказывания на истинность.

В формуле p q r три разных пропозициональных символа, у каждого из которых может быть одно из двух истинностных значений - либо истина, либо ложь. Рассчитаем, пользуясь правилом комбинаторики, количество сочетаний этих значений для трех символов: 23=8. Это значит, что в нашей таблице будет восемь строк. При двух пропозициональных символах было бы всего четыре строки (22=4).

Теперь приступим к построению таблицы, записывая значения символов в столбец под каждым из них:

р

q

r

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

Следует обратить внимание на алгоритм перебора сочетаний: под первым символом пишем четыре раза "0" и четыре раза "1", под вторым - попарно "0" и "1", под третьим - попеременно "0" и "1". В результате ни одна из строк не повторяет другие и учтены все комбинации истинностных значений. Осталось провести исследование логических констант, содержащихся в формуле, в соответствии с их смысловыми значениями:

р

q

r

0 0 0 0 1 1 1 1

0 0 1 1 1 1 1 1

0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

Истинность данной формулы определяется по предпоследнему столбцу. Мы видим, что не при всех сочетаниях истинностных значений пропозициональных символов в результате получается истина. При исследовании форм высказываний встречаются три варианта. Во-первых, формула, как в нашем случае, может оказаться выполнимой, т.е. имеются сочетания значений пропозициональных символов, приводящие к истине, но имеются и не приводящие к ней. Во-вторых, формула может оказаться тождественно-истинной (общезначимой, или законом символической логики). В этом случае при любом наборе значений переменных получается истина. В-третьих, формула может оказаться тождественно-ложной, т.е. при любом наборе значений переменных обращающейся в ложь.

Искусственные языки успешно используются и логикой для точного теоретического и практического анализа мыслительных структур.

Один из таких языков — язык логики высказываний. Он применяется в логической системе, называемой исчислением высказываний, которая анализирует рассуждения, опираясь на истинностные характеристики логических связок и отвлекаясь от внутренней структуры суждений. Принципы построения этого языка будут изложены в главе о дедуктивных умозаключениях.

Второй язык — это язык логики предикатов. Он применяется в логической системе, называемой исчислением предикатов, которая при анализе рассуждений учитывает не только истинностные характеристики логических связок, но и внутреннюю структуру суждений. Рассмотрим кратко состав и структуру этого языка, отдельные элементы которого будут использованы в процессе содержательного изложения курса.

Предназначенный для логического анализа рассуждений, язык логики предикатов структурно отражает и точно следует за смысловыми характеристиками естественного языка. Основной смысловой (семантической) категорией языка логики предикатов является понятие имени.

Имя — это имеющее определенный смысл языковое выражение в виде отдельного слова или словосочетания, обозначающее или именующее какой-либо внеязыковой объект. Имя как языковая категория имеет таким образом две обязательные характеристики или значения: предметное значение и смысловое значение.

Предметное значение (денотат) имени — это один или множество каких-либо объектов, которые этим именем обозначаются. Например, денотатом имени «дом» в русском языке будет все многообразие сооружений, которые этим именем обозначаются: деревянные, кирпичные, каменные; одноэтажные и многоэтажные и т.д.

Смысловое значение (смысл, или концепт) имени — это информация о предметах, т.е. присущие им свойства, с помощью которых выделяют множество предметов. В приведенном примере смыслом слова «дом» будут следующие характеристики любого дома: 1) это сооружение (здание), 2) построено человеком, 3) предназначено для жилья.

Отношение между именем, смыслом и денотатом (объектом) можно представить следующей семантической схемой:

объект / денотат

Это значит, что имя денотирует, т.е. обозначает объекты только через смысл, а не непосредственно. Языковое выражение, не имеющее смысла, не может быть именем, поскольку оно не осмысленно, а значит и не опредмечено, т.е. не имеет денотата.

Типы имен языка логики предикатов, определяемые спецификой объектов именования и представляющие собою его основные семантические категории, это имена: 1) предметов, 2) признаков и 3) предложений.

Имена предметов обозначают единичные предметы, явления, события или их множества. Объектом исследования в этом случае могут быть как материальные (самолет, молния, сосна), так и идеальные (воля, правоспособность, мечта) предметы.

По составу различают имена простые, которые не включают других имен (государство), и сложные, включающие другие имена (спутник Земли). По денотату

имена бывают единичные и общие. Единичное имя обозначает один объект и бывает представлено в языке именем собственным (Аристотель) или дается описательно (самая большая река в Европе). Общее имя обозначает множество, состоящее более чем из одного объекта; в языке оно бывает представлено нарицательным именем (закон) либо дается описательно (большой деревянный дом).

Имена признаков — качеств, свойств или отношений — называются предика/порами. В предложении они обычно выполняют роль сказуемого (например, «быть синим», «бегать», «дарить», «любить» и т.д.). Число имен предметов, к которым относится предикатор, называется его местностью. Предикаторы, выражающие свойства, присущие отдельным предметам, называются одноместными (например, «небо синее»). Предикаторы, выражающие отношения между двумя и более предметами, называются многоместными. Например, предикатор «любить» относится к двухместным («Мария любит Петра»), а предикатор «дарить» — к трехместным («Отец дарит книгу сыну»).

Предложения — это имена для выражений языка, в которых нечто утверждается или отрицается. По своему логическому значению они выражают истину либо ложь.

Алфавит языка логики предикатов включает следующие виды знаков(символов):

1) а, Ь, с,... — символы для единичных (собственных или описательных) имен предметов; их называют предметными постоянными, или константами;

2) х, у, z, ... — символы общих имен предметов, принимающие значения в той или другой области; их называют предметными переменными;

3) Р', Q', R',... — символы для предикатов, индексы над которыми выражают их местность; их называют предикатными переменными;

4) р, q, r, ... — символы для высказываний, которые называют высказывательными, или пропозициональными переменными (от латинского propositio — «высказывание»);

5) V, 3 —символы для количественной характеристики высказываний; их называют кванторами: V — квантор общности; он символизирует выражения — все, каждый, всякий, всегда и т.п.; 3 — квантор существования; он символизирует выражения — некоторый, иногда, бывает, встречается, существует и т.п.;

6) логические связки:

л — конъюнкция (союз «и»);

V — ДИЗЪЮНКЦИЯ (СОЮЗ «ИЛИ»);

—> — импликация (союз «если..., то...»);

•= — эквиваленция, или двойная импликация (союз «если и только если..., то...»);

"1 — отрицание («неверно, что...»). Технические знаки языка: (,) — левая и правая скобки.

Других знаков данный алфавит не включает. Допустимые, т.е. имеющие смысл в языке логики предикатов выражения называются правильно построенными формулами — ППФ. Понятие ППФ вводится следующими определениями:

1. Всякая пропозициональная переменная—p,q, r,... есть ППФ.

2. Всякая предикатная переменная, взятая с последовательностью предметных переменных или констант, число которых соответствует ее местности, является ППФ: А' (х), А2 (х, у), А^х, у, z), А" (х, у,..., п), где А1, А2, А3,..., А" — знаки метаязыка для предикаторов.

3. Для всякой формулы с предметными переменными, в которой любая из переменных связывается квантором, выражения V хА (х) и Э хА(х) также будут ППФ.

4. Если А и В — формулы (А и В — знаки метаязыка для выражения схем формул), то выражения:

А л В,

AvB,

А->В,

А=В,

-I А, -1 В также являются формулами.

5. Любые иные выражения, помимо предусмотренных в п. 1—4, не являются ППФ данного языка.

С помощью приведенного логического языка строится формализованная логическая система, называемая исчислением предикатов. Элементы языка логики предикатов будут использованы в дальнейшем изложении для анализа отдельных фрагментов естественного языка.

22. Логические модальности

Модальность — это оценка высказывания, данная с той или иной точки зрения. Модальная оценка выражается с помощью понятий «необходимо», «возможно», «доказуемо», «опровержимо», «обязательно», «разрешено» и т.п. Модальные высказывания — это высказывания, содержащие хотя бы одно из таких понятий. Модальные высказывания делятся на типы в зависимости от той точки зрения, на основе которой формулируются выражаемые ими характеристики. Ранее, при обсуждении модальных высказываний, проводилось различие между логическими, физическими, эпистемическими, нормативными и оценочными модальными высказываниями.

Модальная логика — раздел логики, в котором исследуются логические связи модальных высказываний.

Модальная логика слагается из ряда разделов, или направлений, каждое из которых занимается модальными высказываниями определённого типа. Фундаментом модальной логики является логика высказываний: первая есть расширение второй.Теория логических модальностей изучает связи логических модальных высказываний, т.е. высказываний, включающих логические модальные понятия: «логически необходимо», «логически возможно», «логически случайно» и т.п.

Логически необходимое высказывание можно определить как высказывание, отрицание которого представляет собой логическое противоречие. Внутренне противоречивы, например, высказывания «Неверно, что, если неон — инертный газ, то неон — инертный газ» и «Неверно, что трава зелёная или она не зелёная». Это означает, что утвердительные высказывания «Если неон — инертный газ, то неон — инертный газ» и «Трава зелёная или она не зелёная» являются логически необходимыми. Понятие логической необходимости связано с понятием логического закона: логически необходимы законы логики и все, что вытекает из них. Логически необходимы, таким образом, все рассматривавшиеся ранее законы логики высказываний.

Истинность логически необходимого высказывания устанавливается независимо от опыта, на чисто логических основаниях. Логическая необходимость является, таким образом, более сильным видом истины, чем фактическая истинность. Например, высказывание «Снег бел» фактически истинно, для подтверждения его истинности требуется эмпирическое наблюдение. Высказывания же «Снег есть снег», «Белое — это белое» и т.п. необходимо истинны: для установления их истинности не нужно обращаться к опыту, достаточно знать значения входящих в них слов. Поскольку данные высказывания логически необходимы, каждое из них можно предварить оборотом «логически необходимо, что…» («Логически необходимо, что снег есть снег» и т.п.).

Логическая возможность — это внутренняя непротиворечивость высказывания.

Высказывание «Коэффициент полезного действия паровой машины равен 100% является, очевидно, ложным, но оно внутренне непротиворечиво и, значит, логически возможно. Но высказывание „К.п.д. такой машины выше 100%“ противоречиво и потому логически невозможно.

Логическая возможность может быть определена и через понятие логического закона: логически возможно высказывание, не противоречащее законам логики.

Скажем, высказывание «Микробы — живые организмы» совместимо с законами логики и, следовательно, логически возможно. Высказывание же «Неверно, что если человек — писатель, то он писатель» противоречит логическому закону тождества и потому является логически невозможным.

Случайно то, что может быть, но может и не быть. Случайность не равнозначна возможности, которая не может не быть. Случайность иногда называют «двусторонней возможностью», т.е. равной возможностью и высказывания, и его отрицания.

Высказывание логически случайно, когда и оно само, и его отрицание являются логически возможными.

Логически возможно высказывание, не являющееся внутренне противоречивым. Если не только само высказывание, но и его отрицание не содержат противоречия, высказывание является логически случайным. Случайно, например, высказывание «Все многоклеточные существа смертны»: ни утверждение этого факта, ни его отрицание не содержат внутреннего (логического) противоречия.

Логически невозможное высказывание — это внутренне противоречивое высказывание.

Логически невозможны, например, высказывания: «Растения дышат и растения не дышат» и «Неверно, что, если Вселенная бесконечна, то она бесконечна». Оба они являются отрицаниями логических законов: первое — закона противоречия, второе — закона тождества.

Понятия логической необходимости и возможности можно определить одно через другое:

«А логически необходимо» означает «отрицание А не является логически возможным» (например: «Необходимо, что холод есть холод» означает «Невозможно, чтобы холод не был холодом»);

«А логически возможно» означает «отрицание А не является логически необходимым» («Возможно, что кадмий — металл» означает «Неверно, что необходимо, что кадмий — не металл»).

Логическую случайность можно определить через логическую возможность: «логически случайно А » означает «логически возможно как А , так и не-A »(«Логически случайно, что на Земле есть жизнь» означает «Логически возможно, что на Земле есть жизнь, и логически возможно, что на Земле нет жизни»).

Логически необходимое высказывание является истинным, но не наоборот: не каждая истина логически необходима. Логически необходимое высказывание является также логически возможным, но не наоборот: не все логически возможное логически необходимо.

Из истинности высказывания вытекает его логическая возможность, но не наоборот: логическая возможность слабее истинности.

23. Физические модальности

Физические модальные высказывания формируются с помощью физических модальных понятий (физически необходимо, физически возможно и т.п.), называемых также онтологическими или каузальными. Например: «Физически необходимо, что действие равно противодействию», «Физически случайно, что стекло хрупко», «Физически невозможно, чтобы дождь лил семь дней и семь ночей подряд» и т.п.

Логические модальные понятия связаны с «механикой» человеческого мышления и используются для характеристики существенных её моментов. Физические модальные понятия касаются устройства самого реального мира.

Нечто необходимо, если оно не может быть иным, чем оно есть. В зависимости от того, на какое основание опирается утверждение о необходимости, выделяются два её вида: логическая необходимость и физическая необходимость. Логическая необходимость связана с логическим законом: логически необходимы законы логики и все, что вытекает из них. Физическая необходимость связана с законами природы: физически необходимо то, отрицание чего нарушает законы природы. Физически необходимы, например, высказывания: «Все планеты вращаются вокруг своей оси» и «Электрон, движущийся по стационарной орбите, не излучает энергию». Отрицания этих высказываний противоречили бы законам физики: отрицание первого высказывания несовместимо с законами небесной механики, отрицание второго — с законами квантовой механики.

Физически возможным является высказывание, не противоречащее законам природы.

Например, высказывание «К.п.д. двигателя внутреннего сгорания равен 100%» противоречит законам термодинамики и, значит, физически невозможно. Высказывание же «К.п.д такого двигателя превышает 30%» не противоречит никаким ограничениям, устанавливаемым законами природы, и является физически возможным.

Высказывание физически случайно, когда и оно само, и его отрицание являются физически возможными.

Случайно, например, что этот дом выкрашен в коричневый цвет: нет законов природы, которые предписывали бы ему быть коричневым или, наоборот, иметь другой цвет.

Физически невозможно высказывание, противоречащее законам природы.

Физически невозможны, например, высказывания: «Действие не равно противодействию» и «Сила не равняется произведению массы на ускорение», являющиеся отрицаниями законов механики.

Физическая необходимость может быть определена через физическую возможность: «высказывание физически необходимо» означает «отрицание этого высказывания не является физически возможным» (например: «физически необходимо, что тела, имеющие массу, притягиваются друг к другу» означает «физически невозможно, чтобы такие тела не притягивались друг к другу»).

Физическая возможность может быть определена через физическую необходимость: «высказывание физически возможно» означает «отрицание этого высказывания не является физически необходимым» (например: «Двигатель внешнего сгорания физически возможен» означает «Отсутствие такого двигателя не является физически необходимым»).

Физическую случайность можно определить через физическую возможность: «высказывание физически случайно» означает «физически возможно как данное высказывание, так и его отрицание» («Физически случайно, что шарик рулетки остановится на красном поле» означает «Физически возможно, что он остановится на красном, точно так же, как физически возможно, что он не остановится на красном»).

Физически необходимое высказывание является истинным, но не наоборот: не каждая истина является законом природы и тем самым физически необходимой.

Физически необходимое высказывание является также физически возможным, но не наоборот: не все физически возможное физически необходимо, т.е. представляет собой закон природы.

Из истинности высказывания вытекает его физическая возможность, но не наоборот: не каждое физически возможное событие реализуется. Если спутники Марса существуют, то они физически возможны, т.е. их существование не противоречит законам природы. Но если искусственные спутники этой планеты физически возможны, т.е. не противоречат законам природы, это не означает что у неё есть такие спутники.

Нетрудно заметить, что взаимные отношения физической необходимости, физической возможности и истинности строго аналогичны тем отношениям, которые имеют место между логической необходимостью, логической возможностью и истинностью.

Теперь, когда уточнены смыслы логической и физической необходимости, а также логической и физической возможности, можно сопоставить логические и физические модальные понятия между собой.

Логическая необходимость, присущая законам логики, существенно отличается от физической необходимости, характерной для законов природы.

Металлические стержни при нагревании удлиняются — это закон природы. Он действителен в любой точке Вселенной и в любой момент времени. Он, кроме того, действует с необходимостью. Вещи в самой своей сущности, в своём глубинном устройстве таковы, что размеры металлических стержней увеличиваются при нагревании.

Вместе с тем можно представить себе, что наш мир несколько изменился и притом так, что нагреваемые металлические стержни не только не удлиняются, но даже сокращаются. Нельзя, однако, вообразить себе такой мир, в котором стержни и удлинялись бы и вместе с тем не удлинялись, т.е. мир, в котором нарушался бы логический закон противоречия.

Логическая необходимость более непреложна, чем физическая. Первая уже второй: все логически необходимое является также физически необходимым, но не наоборот. Иначе говоря, законы логики есть также и законы природы, но не наоборот. Если, например, планета вращается, то она вращается — это следствие закона логики и вместе с тем необходимая истина физики. Но то, что у планет эллиптические орбиты, — закон физики, ноне логики: логически возможно, что орбиты планет круговые. Физическая необходимость не сводится к логической. Нельзя, скажем, принципы механики свести к законам логики.

Логическая возможность шире физической: возможное физически является возможным и логически, но не наоборот. К примеру, двигатель с к.п.д. 100% возможен логически, но физически невозможен. Круговые орбиты планет возможны логически, но невозможны физически.

С помощью круговых схем отношения между логически необходимым, физически необходимым, физически возможным и логически возможным представляются четырьмя концентрическими кругами. Все логически необходимое необходимо также физически. Все физически необходимое, а значит, и включающееся в него логически необходимое, включается в физически возможное. Самой широкой категорией является логически возможное. Оно включает три другие категории в указанном их порядке.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]