
- •Ответы по физики.
- •Электростатика. Электрический заряд и напряженность электрического поля. Закон Кулона. Теорема Гаусса для поля в вакууме.
- •Электростатическое поле в диэлектриках. Основные уравнения электрстатики в диэлектриках.
- •Постоянный ток. Закон Ома для однородного и неоднородного участков цепи.
- •Сторонние силы. Эдс гальванического элемента. Закон ома для замкнутой цепи.
- •Правила кирхгофа.
- •Закон Джоуля Ленца в интегральной и дифференциальных формах.
- •Механические колебания. Амплитуда, круговая частота, фаза гармонических колебаний. Векторные диаграммы.
- •Гармонический осциллятор. Дифференциальное уравнение свободных незатухающих колебаний и его решение.
- •Вынужденные колебания. Резонанс. Резонансные кривые.
- •Затухающие свободные колебания. Логарифмический декремент затухания.Апериодические колебания.
- •Магнитное поле в вакууме. Магнитная индукция, поток вектора магнитной индукции. Принцип суперпозиции.
- •Виток с током в магнитном поле. Закон ампера. Работа по перемещению проводника с током в магнитном поле.
- •Действие магнитного поля на движущийся заряд. Сила Лоренца.
- •Циркуляция вектора магнитной индукции. Закон полного тока.
- •Магнитный поток. Теорема Остроградского-гаусса. Работа по перемещению проводника с током в магнитном поле.
- •Явление электромагнитной индукции и ее вывод из закона сохр. Э.Нергии.
- •Магнитное поле в веществе. Атом в магнитном поле. Типы магнетиков. Намагниченность. Магнитная восприимчивость. Напряжённость магнитного поля, магнитная проницаемость среды.
- •Диамагнетики и парамагетики в магнитном поле.
- •Феррамагнетики. Явление гистерезиса. Доменная теория ферромагнетизма. Точка кюри.
- •Уравнения Максвелла для электромагнитного поля в интегральной форме. Ток смещения.
- •Уравнение максвелла в дифференциальной форме. Плотность энергии. Плотность потока энергии электромагнитных волн.
- •Гармонические электромагнитные колебьания и их хар-ки. Диф. Ур-ие гармонич. Колебаний и его решение.
- •Интерференция света. Интерференция двух лучей. И т.Д
- •Дифракция света. Принцип Гюй генса- френеля. Зоны френеля.
- •Дифракция параллельного пучка лучей на экране с длинной щелью. Дифракционный спектр. Условия минимумов.
- •Дифракционная решётка. Главные максимумы. Главные минимумы. Разрушающие способности. Угловая дисперсия. Формула вульфа- брэгта.
- •Поляризация света. Виды поляризации. Двойное лучепреломление.
- •Формулы Френеля. Закон брюста.
- •Тепловое излучение. Абсолютно чёрное тело. Закон стефана больцмана. Закон вина.
- •Корпускулярно-волновой дуализм света. Квант света. Энергия и импульс фотона. Внешний фотоэффект.
- •Световое давление. Опыты Лебедева. Эффект комптона.
- •Волновые свойчтва микрочастиц. Длина волны де Бройля. Волновая функция. Уравнение Шредингера.
- •Атом водорода. Теория Бора. Уровни энергии атома водорода. Кывантовые числа: главное, орбитальное, магнитное, спиновое.
- •Квантовая статистика. Фазовое пространство. Функция распределения. Понятие о квантовой статистике …
- •Вырожденный электронный газ в металлах. Вывод квантовой теории электропроводности металлов. Сверхпроводимость.
- •Контакт двух металлов по зональной теории. Термоэлектрические явления и их применение.
- •Ядерные силы. Энергия связи ядра. Энергетический эффект ядерной реакции. Закон радиоактивного распада. Время жизни ядра…
Квантовая статистика. Фазовое пространство. Функция распределения. Понятие о квантовой статистике …
Квантовая статистика — раздел статистической механики, в котором n-частичные квантовые системы описываются методом статистических операторов комплексов частиц (редуцированными матрицами плотности). Число частиц n может быть произвольным натуральным (конечным) числом или бесконечностью.
В узком смысле под квантовой статистикой имеют ввиду статистики Бозе — Эйнштейна и Ферми — Дирака.
Под квантовой статистикой иногда подразумевают обобщение математической статистики, опирающееся на теорию некоммутативной (квантовой) вероятности.
Фазовое пространство в математике и физике — пространство, на котором представлено множество всех состояний системы, так, что каждому возможному состоянию системы соответствует точка фазового пространства.
Сущность понятия фазового пространства заключается в том, что состояние сколь угодно сложной системы представляется в нём одной единственной точкой, а эволюция этой системы — перемещением этой точки. Кроме того, в механике движение этой точки определяется сравнительно простыми уравнениями Гамильтона, анализ которых позволяет делать заключения о поведении сложных механических систем.
В классической механике гладкие многообразия служат как фазовые пространства.
Статистика Фе́рми — Дира́ка в статистической физике — квантовая статистика, применяемая к системам тождественных фермионов (как правило, частиц с полуцелым спином, подчиняющихся принципу запрета Паули, то есть, одно и то же квантовое состояние не может занимать более одной частицы); определяет распределение вероятностей нахождения фермионов на энергетических уровнях системы, находящейся в термодинамическом равновесии; предложена в 1926 году итальянским физиком Энрико Ферми и одновременно английским физиком Полем Дираком, который выяснил её квантово-механический смысл; позволяет найти вероятность, с которой фермион занимает данный энергетический уровень.
Работы по статистике Ферми — Дирака были опубликованы в 1926 году, а в 1927 она была применена Арнольдом Зоммерфельдом к электронам в металле.
В статистике Ферми — Дирака среднее число частиц в состоянии с энергией есть
— среднее число частиц в состоянии
энергия состояния
— кратность вырождения состояния (число состояний с энергией ),
— химический потенциал (который равен энергии Ферми
при абсолютном нуле температуры),
— постоянная Больцмана,
— абсолютная температура.
№41
Вырожденный электронный газ в металлах. Вывод квантовой теории электропроводности металлов. Сверхпроводимость.
Вырожденный газ — газ, на свойства которого существенно влияют квантовомеханические эффекты, возникающие вследствие тождественности его частиц. Вырождение наступает в условиях, когда расстояния между частицами газа становятся соизмеримыми с длиной волны де Бройля; в зависимости от спина частиц выделяются два типа вырожденных газов - ферми-газ, образованный фермионами (частицами с полуцелым спином) и бозе-газ, образованный бозонами (частицами с целым спином).
Влияние
тождественности частиц становится
существенным при уменьшении средних
расстояний между ними до расстояний,
соизмеримых с длиной волны де Бройля,
ассоциированной с частицей, то есть
выполняется условие:
— объемная концентрация частиц,
длина волны де Бройля частиц массы , движущихся со скоростью
Условия
вырождения выполняются при достаточно
низкой температуре .
(для
идеального газа
) и высокой концентрации частиц
Сверхпроводи́мость — свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура). Известны несколько десятков чистых элементов, сплавов и керамик, переходящих в сверхпроводящее состояние. Сверхпроводимость — квантовое явление. Оно характеризуется также эффектом Мейснера, заключающемся в полном вытеснении магнитного поля из объема сверхпроводника. Существование этого эффекта показывает, что сверхпроводимость не может быть описана просто как идеальная проводимость в классическом понимании.
Открытие в 1986—1993 гг. ряда высокотемпературных сверхпроводников (ВТСП) далеко отодвинуло температурную границу сверхпроводимости и позволило практически использовать сверхпроводящие материалы не только при температуре жидкого гелия (4.2 К), но и при температуре кипения жидкого азота (77 К), гораздо более дешевой криогенной жидкости.
№42
Зонная теория твёрдого тела — квантовомеханическая теория движения электронов в твёрдом теле.
В соответствии с квантовой механикой свободные электроны могут иметь любую энергию — их энергетический спектр непрерывен. Электроны, принадлежащие изолированным атомам, имеют определённые дискретные значения энергии. В твёрдом теле энергетический спектр электронов существенно иной, он состоит из отдельных разрешённых энергетических зон, разделённых зонами запрещённых энергий.
Энергия Фе́рми () системы невзаимодействующих фермионов — это увеличение энергии основного состояния системы при добавлении одной частицы. Это эквивалентно химическому потенциалу системы в ее основном состоянии при абсолютном нуле температур. Энергия Ферми может также интерпретироваться как максимальная энергия фермиона в основном состоянии при абсолютном нуле температур. Энергия Ферми — одно из центральных понятий физики твёрдого тела.
Физический смысл уровня Ферми: вероятность обнаружения частицы на уровне Ферми составляет 0,5 при любых температурах.
Название дано в честь итальянского физика Энрико Ферми.
Фермионы — частицы с полуцелым спином, обычно 1/2, такие как электроны — подчиняются принципу запрета Паули, согласно которому две одинаковые частицы не могут занимать одно и то же квантовое состояние. Следовательно, фермионы подчиняются статистике Ферми — Дирака. Основное состояние невзаимодействующих фермионов строится начиная с пустой системы и постепенного добавления частиц по одной, последовательно заполняя состояния в порядке возрастания энергии. Когда необходимое число частиц достигнуто, энергия Ферми равна энергии самого высокого заполненного состояния (или самого низкого незанятого состояния; различие не важно, когда система является макроскопической). Поэтому энергию Ферми называют также уровнем Фе́рми. Частицы с энергией равной энергии Ферми двигаются со скоростью называемой скоростью Фе́рми.
В свободном электронном газе (квантовомеханическая версия идеального газа фермионов) квантовые состояния могут быть помечены согласно их импульсу. Кое-что подобное можно сделать для периодических систем типа электронов, движущихся в атомной решётке металла, используя так называемый квазиимпульс (Частица в периодическом потенциале). В любом случае, состояния с энергиейФерми расположены на поверхности в пространстве импульсов, известной как поверхность Ферми. Для свободного электронного газа, поверхность Ферми — поверхность сферы; для периодических систем, она вообще имеет искаженную форму. Объем заключённый под поверхностью Ферми определяет число электронов в системе, и её топология непосредственно связана с транспортными свойствами металлов, например, электрической проводимостью. Поверхности Ферми большинства металлов хорошо изучены экспериментально и теоретически.
При ненулевой температуре ферми-газ не будет являться вырожденным, и населённость уровней будет плавно уменьшаться от нижних уровней к верхним. В качестве уровня Ферми можно выбрать уровень, заполненный ровно наполовину (то есть вероятность находящегося на искомом уровне состояния быть заполненным частицей должна быть равна 1/2).
Энергия Ферми свободного ферми-газа связана с химическим потенциалом уравнением
Где — энергия Ферми, — постоянная Больцмана, температура абс.
Транзи́стор (англ. transistor), полупроводниковый триод — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналам управлять током в электрической цепи. Обычно используется для усиления, генерирования и преобразования электрических сигналов. На принципиальных схемах обозначается «VT» или «Q». В русскоязычной литературе и документации до 1970-х гг. применялись обозначения «Т», «ПП» (полупроводниковый прибор) или «ПТ» (полупроводниковый триод).
Управление током в выходной цепи осуществляется за счёт изменения входного напряжения или тока. Небольшое изменение входных величин может приводить к существенно большему изменению выходного напряжения и тока. Это усилительное свойство транзисторов используется в аналоговой технике (аналоговые ТВ, радио, связь и т. п.).
В настоящее время в аналоговой технике доминируют биполярные транзисторы (БТ) (международный термин — BJT, bipolar junction transistor). Другой важнейшей отраслью электроники является цифровая техника (логика, память, процессоры, компьютеры, цифровая связь и т. п.), где, напротив, биполярные транзисторы почти полностью вытеснены полевыми.
Вся современная цифровая техника построена, в основном, на полевых МОП (металл-оксид-полупроводник)-транзисторах (МОПТ), как более экономичных, по сравнению с БТ, элементах. Иногда их называют МДП (металл-диэлектрик-полупроводник)- транзисторы. Международный термин — MOSFET (metal-oxide-semiconductor field effect transistor). Транзисторы изготавливаются в рамках интегральной технологии на одном кремниевом кристалле (чипе) и составляют элементарный «кирпичик» для построения микросхем логики, памяти, процессора и т. п. Размеры современных МОПТ составляют от 90 до 22 нм[источник не указан 723 дня]. В настоящее время на одном современном кристалле площадью 1—2 см² могут разместиться несколько (пока единицы) миллиардов МОПТ. На протяжении 60 лет происходит уменьшение размеров (миниатюризация) МОПТ и увеличение их количества на одном чипе (степень интеграции), в ближайшие годы ожидается дальнейшее увеличение степени интеграции транзисторов на чипе (см. Закон Мура). Уменьшение размеров МОПТ приводит также к повышению быстродействия процессоров, снижению энергопотребления и тепловыделения.
В настоящее время ведется внедрение 3-х мерных(3d транзисторов) в микропроцессоры Intel. Эта революционная технология позволяет существенно улучшить существующие характеристики процессоров. Отметим, что переход к 3D-транзисторам при технологическом процессе 22 нм позволит повысить производительность процессоров на 37% и снизить энергопотребление более чем на 50%[источник не указан 36 дней]. Примечательно, что затраты на производство возрастут всего на 2–3%, т.е. в магазинах новые процессоры не будут значительно дороже старых[источник не указан 36 дней].
№43