
- •Ответы по физики.
- •Электростатика. Электрический заряд и напряженность электрического поля. Закон Кулона. Теорема Гаусса для поля в вакууме.
- •Электростатическое поле в диэлектриках. Основные уравнения электрстатики в диэлектриках.
- •Постоянный ток. Закон Ома для однородного и неоднородного участков цепи.
- •Сторонние силы. Эдс гальванического элемента. Закон ома для замкнутой цепи.
- •Правила кирхгофа.
- •Закон Джоуля Ленца в интегральной и дифференциальных формах.
- •Механические колебания. Амплитуда, круговая частота, фаза гармонических колебаний. Векторные диаграммы.
- •Гармонический осциллятор. Дифференциальное уравнение свободных незатухающих колебаний и его решение.
- •Вынужденные колебания. Резонанс. Резонансные кривые.
- •Затухающие свободные колебания. Логарифмический декремент затухания.Апериодические колебания.
- •Магнитное поле в вакууме. Магнитная индукция, поток вектора магнитной индукции. Принцип суперпозиции.
- •Виток с током в магнитном поле. Закон ампера. Работа по перемещению проводника с током в магнитном поле.
- •Действие магнитного поля на движущийся заряд. Сила Лоренца.
- •Циркуляция вектора магнитной индукции. Закон полного тока.
- •Магнитный поток. Теорема Остроградского-гаусса. Работа по перемещению проводника с током в магнитном поле.
- •Явление электромагнитной индукции и ее вывод из закона сохр. Э.Нергии.
- •Магнитное поле в веществе. Атом в магнитном поле. Типы магнетиков. Намагниченность. Магнитная восприимчивость. Напряжённость магнитного поля, магнитная проницаемость среды.
- •Диамагнетики и парамагетики в магнитном поле.
- •Феррамагнетики. Явление гистерезиса. Доменная теория ферромагнетизма. Точка кюри.
- •Уравнения Максвелла для электромагнитного поля в интегральной форме. Ток смещения.
- •Уравнение максвелла в дифференциальной форме. Плотность энергии. Плотность потока энергии электромагнитных волн.
- •Гармонические электромагнитные колебьания и их хар-ки. Диф. Ур-ие гармонич. Колебаний и его решение.
- •Интерференция света. Интерференция двух лучей. И т.Д
- •Дифракция света. Принцип Гюй генса- френеля. Зоны френеля.
- •Дифракция параллельного пучка лучей на экране с длинной щелью. Дифракционный спектр. Условия минимумов.
- •Дифракционная решётка. Главные максимумы. Главные минимумы. Разрушающие способности. Угловая дисперсия. Формула вульфа- брэгта.
- •Поляризация света. Виды поляризации. Двойное лучепреломление.
- •Формулы Френеля. Закон брюста.
- •Тепловое излучение. Абсолютно чёрное тело. Закон стефана больцмана. Закон вина.
- •Корпускулярно-волновой дуализм света. Квант света. Энергия и импульс фотона. Внешний фотоэффект.
- •Световое давление. Опыты Лебедева. Эффект комптона.
- •Волновые свойчтва микрочастиц. Длина волны де Бройля. Волновая функция. Уравнение Шредингера.
- •Атом водорода. Теория Бора. Уровни энергии атома водорода. Кывантовые числа: главное, орбитальное, магнитное, спиновое.
- •Квантовая статистика. Фазовое пространство. Функция распределения. Понятие о квантовой статистике …
- •Вырожденный электронный газ в металлах. Вывод квантовой теории электропроводности металлов. Сверхпроводимость.
- •Контакт двух металлов по зональной теории. Термоэлектрические явления и их применение.
- •Ядерные силы. Энергия связи ядра. Энергетический эффект ядерной реакции. Закон радиоактивного распада. Время жизни ядра…
Поляризация света. Виды поляризации. Двойное лучепреломление.
Поляризация света – процесс упорядочения колебаний вектора напряжённости электрического поля световой волны при прохождении света сквозь некоторые вещества (при преломлении) или при отражении светового потока.
Поляризатор – вещество (или устройство) служащее для преобразования естественного света в плоскополяризованный.
Плоскость поляризации – плоскость, проходящая через направление колебаний светового вектора плоскополяризованной волны и направление распространения этой волны.
Основными являются два вида поляризации:
линейная — колебания возмущения происходит в какой-то одной плоскости. В таком случае говорят о «плоско-поляризованной волне»;
круговая — конец вектора амплитуды описывает окружность в плоскости колебаний. В зависимости от направления вращения вектора может быть правой или левой.
Двойно́е лучепреломле́ние — эффект расщепления в анизотропных средах луча света на две составляющие. Впервые обнаружен на кристалле исландского шпата. Если луч света падает перпендикулярно к поверхности кристалла, то на этой поверхности он расщепляется на два луча. Первый луч продолжает распространяться прямо, и называется обыкновенным (o — ordinary), второй же отклоняется в сторону, нарушая обычный закон преломления света, и называется необыкновенным (e — extraordinary).
№33
Формулы Френеля. Закон брюста.
Фо́рмулы Френе́ля определяют амплитуды и интенсивности преломлённой и отражённой электромагнитной волны при прохождении через плоскую границу раздела двух сред с разными показателями преломления. Названы в честь Огюста Френеля, французского физика, который их вывел. Отражение света, описываемое формулами Френеля, называется френелевским отражением.
Формулы Френеля справедливы в том случае, когда граница раздела двух сред гладкая, среды изотропны, угол отражения равняется углу падения, а угол преломления определяется законом Снеллиуса. В случае неровной поверхности, особенно когда характерные размеры неровностей одного порядка с длиной волны, большое значение имеет диффузное рассеяние света на поверхности.
При падении на плоскую границу различают две поляризации света. s-Поляризация — это поляризация света, для которой напряжённость электрического поля электромагнитной волны перпендикулярна плоскости падения (т.е. плоскости, в которой лежат и падающий, и отражённый луч). p-Поляризация — поляризация света, для которой вектор напряжённости электрического поля лежит в плоскости падения.
Формулы Френеля для s-поляризации и p-поляризации различаются. Поскольку свет с разными поляризациями по-разному отражается от поверхности, то отражённый свет всегда частично поляризован, даже если падающий свет неполяризован. Угол падения, при котором отражённый луч полностью поляризован, называется углом Брюстера; он зависит от отношения показателей преломления сред, образующих границу раздела.
s-Поляризация — это поляризация света, для которой напряжённость электрического поля электромагнитной волны перпендикулярна плоскости падения (т.е. плоскости, в которой лежат и падающий, и отражённый луч).
где
—
угол падения, —
угол
преломления, —
магнитная
проницаемость среды, из которой падает
волна, —
магнитная проницаемость среды, в которую
волна проходит, —
амплитуда волны, которая падает на
границу раздела,
— амплитуда отражённой волны,
—
амплитуда преломлённой волны. В оптическом
диапазоне частот с хорошей точностью
и выражения упрощаются до указанных
после стрелок[1].
Углы падения и преломления для связаны между собой законом Снеллиуса
Отношение
называется относительным показателем
преломления двух сред.
Коэффициент отражения
Коэффициент пропускания
Обратите
внимание, коэффициент пропускания
не равен , так как волны одинаковой
амплитуды в разных средах несут разную
энергию.
[править]
p-Поляризация
p-Поляризация — поляризация света, для которой вектор напряжённости электрического поля лежит в плоскости падения.
где , и — амплитуды волны, которая падает на границу раздела, отражённой волны и преломлённой волны, соответственно, а выражения после стрелок вновь соответствуют случаю [1].
Коэффициент отражения
Коэффициент
пропускания
[править]
Нормальное падение
В важном частном случае нормального падения света исчезает разница в коэффициентах отражения и пропускания для p- и s-поляризованных волн. Для нормального падения
Закон Брюстера — закон оптики, выражающий связь показателя преломления с таким углом, при котором свет, отражённый от границы раздела, будет полностью поляризованным в плоскости, перпендикулярной плоскости падения, а преломлённый луч частично поляризуется в плоскости падения, причем поляризация преломленного луча достигает наибольшего значения. Легко установить, что в этом случае отраженный и преломленный лучи взаимно перпендикулярны. Соответствующий угол называется углом Брюстера.
Это явление оптики названо по имени шотландского физика Дэвида Брюстера, открывшего его в 1815 году.
Закон
Брюстера:
,
где
— показатель преломления второй среды
относительно первой,
—
угол падения (угол Брюстера).
При отражении от одной пластинки под углом Брюстера интенсивность линейно поляризованного света очень мала (около 4 % от интенсивности падающего луча). Поэтому для того, чтобы увеличить интенсивность отраженного света (или поляризовать свет, прошедший в стекло, в плоскости, параллельной плоскости падения) применяют несколько скрепленных пластинок, сложенных в стопу — стопу Столетова. Легко проследить по чертежу происходящее. Пусть на верхнюю часть стопы падает луч света. От первой пластины будет отражаться полностью поляризованный луч (около 4 % первоначальной интенсивности), от второй пластины также отразится полностью поляризованный луч (около 3,75 % первоначальной интенсивности) и так далее. При этом луч, выходящий из стопы снизу, будет все больше поляризоваться в плоскости, параллельной плоскости падения, по мере добавления пластин.
№34