- •Ответы по физики.
- •Электростатика. Электрический заряд и напряженность электрического поля. Закон Кулона. Теорема Гаусса для поля в вакууме.
- •Электростатическое поле в диэлектриках. Основные уравнения электрстатики в диэлектриках.
- •Постоянный ток. Закон Ома для однородного и неоднородного участков цепи.
- •Сторонние силы. Эдс гальванического элемента. Закон ома для замкнутой цепи.
- •Правила кирхгофа.
- •Закон Джоуля Ленца в интегральной и дифференциальных формах.
- •Механические колебания. Амплитуда, круговая частота, фаза гармонических колебаний. Векторные диаграммы.
- •Гармонический осциллятор. Дифференциальное уравнение свободных незатухающих колебаний и его решение.
- •Вынужденные колебания. Резонанс. Резонансные кривые.
- •Затухающие свободные колебания. Логарифмический декремент затухания.Апериодические колебания.
- •Магнитное поле в вакууме. Магнитная индукция, поток вектора магнитной индукции. Принцип суперпозиции.
- •Виток с током в магнитном поле. Закон ампера. Работа по перемещению проводника с током в магнитном поле.
- •Действие магнитного поля на движущийся заряд. Сила Лоренца.
- •Циркуляция вектора магнитной индукции. Закон полного тока.
- •Магнитный поток. Теорема Остроградского-гаусса. Работа по перемещению проводника с током в магнитном поле.
- •Явление электромагнитной индукции и ее вывод из закона сохр. Э.Нергии.
- •Магнитное поле в веществе. Атом в магнитном поле. Типы магнетиков. Намагниченность. Магнитная восприимчивость. Напряжённость магнитного поля, магнитная проницаемость среды.
- •Диамагнетики и парамагетики в магнитном поле.
- •Феррамагнетики. Явление гистерезиса. Доменная теория ферромагнетизма. Точка кюри.
- •Уравнения Максвелла для электромагнитного поля в интегральной форме. Ток смещения.
- •Уравнение максвелла в дифференциальной форме. Плотность энергии. Плотность потока энергии электромагнитных волн.
- •Гармонические электромагнитные колебьания и их хар-ки. Диф. Ур-ие гармонич. Колебаний и его решение.
- •Интерференция света. Интерференция двух лучей. И т.Д
- •Дифракция света. Принцип Гюй генса- френеля. Зоны френеля.
- •Дифракция параллельного пучка лучей на экране с длинной щелью. Дифракционный спектр. Условия минимумов.
- •Дифракционная решётка. Главные максимумы. Главные минимумы. Разрушающие способности. Угловая дисперсия. Формула вульфа- брэгта.
- •Поляризация света. Виды поляризации. Двойное лучепреломление.
- •Формулы Френеля. Закон брюста.
- •Тепловое излучение. Абсолютно чёрное тело. Закон стефана больцмана. Закон вина.
- •Корпускулярно-волновой дуализм света. Квант света. Энергия и импульс фотона. Внешний фотоэффект.
- •Световое давление. Опыты Лебедева. Эффект комптона.
- •Волновые свойчтва микрочастиц. Длина волны де Бройля. Волновая функция. Уравнение Шредингера.
- •Атом водорода. Теория Бора. Уровни энергии атома водорода. Кывантовые числа: главное, орбитальное, магнитное, спиновое.
- •Квантовая статистика. Фазовое пространство. Функция распределения. Понятие о квантовой статистике …
- •Вырожденный электронный газ в металлах. Вывод квантовой теории электропроводности металлов. Сверхпроводимость.
- •Контакт двух металлов по зональной теории. Термоэлектрические явления и их применение.
- •Ядерные силы. Энергия связи ядра. Энергетический эффект ядерной реакции. Закон радиоактивного распада. Время жизни ядра…
Дифракция параллельного пучка лучей на экране с длинной щелью. Дифракционный спектр. Условия минимумов.
Дифракция света на одной щели
Пусть
в непрерывном экране есть щель: ширина
щели
, длина щели (перпендикулярно плоскости
листа)
а
щель падают параллельные лучи света.
Для облегчения расчета считаем, что в
плоскости щели АВ амплитуды и фазы
падающих волн одинаковы.
Разобьем щель на зоны Френеля так, чтобы оптическая разность хода между лучами, идущими от соседних зон, была равна .
Если на ширине щели укладывается четное число таких зон, то в точке (побочный фокус линзы) будет наблюдаться минимум интенсивности, а если нечетное число зон, то максимум интенсивности:
–
условие минимума
интенсивности;
– условие максимума
интенсивности
Картина
будет симметричной относительно главного
фокуса точки
.
Знак плюс и минус соответствует углам,
отсчитанным в ту или иную сторону.
Интенсивность
света
Как
видно из рис. 9.5, центральный максимум
по интенсивности превосходит все
остальные.
Рассмотрим
влияние ширины щели. Т.к.
условие минимума имеет вид
отсюда
Из
этой формулы видно, что с увеличением
ширины щели b положения минимумов
сдвигаются к центру, центральный максимум
становится резче.
При уменьшении ширины щели b вся картина расширяется, расплывается, центральная полоска тоже расширяется, захватывая все большую часть экрана, а интенсивность ее уменьшается.
дифракция - это волновое явление - рассеяние света (ну, электромагнитной волны в общем случае) на препятствии. В частности на щели.
Условия максимумов Условия минимумов
Разность хода Dd = k·l, где k = 0, 1, 2... Разность хода Dd = (2k+1)·l/2
Разность фаз Df = 2·k·p Разность фаз Df = (2k+1)·p
Колебания в точке наложения волн имеют одинаковую фазу. Колебания в точке наложения волн имеют противоположную фазу.
Наблюдается усиление колебаний Наблюдается ослабление колебаний.
№31
Дифракционная решётка. Главные максимумы. Главные минимумы. Разрушающие способности. Угловая дисперсия. Формула вульфа- брэгта.
Дифракционная решётка — оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори, который использовал в качестве решётки птичьи перья.
Дифракционную решётку применяют в спектральных приборах, также в качестве оптических датчиков линейных и угловых перемещений (измерительные дифракционные решётки), поляризаторов и фильтров инфракрасного излучения, делителей пучков в интерферометрах и так называемых «антибликовых» очках.
Угловая
дисперсия дифракционной решетки:
где δ. - угловое расстояние между двумя спектральными
линиями с разностью длин волн δλ, - угол дифракции, k=1,2,3...
БРЭ́ГГА — ВУ́ЛЬФА УСЛОВИЕ дифракции рентгеновских лучей в кристалле: 2dsin ql = ml, где d — расстояние между отражающими кристаллографическими плоскостями, q — угол между падающим лучом и отражающей плоскостью, l — длина волны излучения, m — целое положительное число. Установлено в 1913 У. Л. Брэггом и независимо Г. В. Вульфом. Брэгга-Вульфа условие — основа рентгеновского структурного анализа.
№32
