
- •Ответы по физики.
- •Электростатика. Электрический заряд и напряженность электрического поля. Закон Кулона. Теорема Гаусса для поля в вакууме.
- •Электростатическое поле в диэлектриках. Основные уравнения электрстатики в диэлектриках.
- •Постоянный ток. Закон Ома для однородного и неоднородного участков цепи.
- •Сторонние силы. Эдс гальванического элемента. Закон ома для замкнутой цепи.
- •Правила кирхгофа.
- •Закон Джоуля Ленца в интегральной и дифференциальных формах.
- •Механические колебания. Амплитуда, круговая частота, фаза гармонических колебаний. Векторные диаграммы.
- •Гармонический осциллятор. Дифференциальное уравнение свободных незатухающих колебаний и его решение.
- •Вынужденные колебания. Резонанс. Резонансные кривые.
- •Затухающие свободные колебания. Логарифмический декремент затухания.Апериодические колебания.
- •Магнитное поле в вакууме. Магнитная индукция, поток вектора магнитной индукции. Принцип суперпозиции.
- •Виток с током в магнитном поле. Закон ампера. Работа по перемещению проводника с током в магнитном поле.
- •Действие магнитного поля на движущийся заряд. Сила Лоренца.
- •Циркуляция вектора магнитной индукции. Закон полного тока.
- •Магнитный поток. Теорема Остроградского-гаусса. Работа по перемещению проводника с током в магнитном поле.
- •Явление электромагнитной индукции и ее вывод из закона сохр. Э.Нергии.
- •Магнитное поле в веществе. Атом в магнитном поле. Типы магнетиков. Намагниченность. Магнитная восприимчивость. Напряжённость магнитного поля, магнитная проницаемость среды.
- •Диамагнетики и парамагетики в магнитном поле.
- •Феррамагнетики. Явление гистерезиса. Доменная теория ферромагнетизма. Точка кюри.
- •Уравнения Максвелла для электромагнитного поля в интегральной форме. Ток смещения.
- •Уравнение максвелла в дифференциальной форме. Плотность энергии. Плотность потока энергии электромагнитных волн.
- •Гармонические электромагнитные колебьания и их хар-ки. Диф. Ур-ие гармонич. Колебаний и его решение.
- •Интерференция света. Интерференция двух лучей. И т.Д
- •Дифракция света. Принцип Гюй генса- френеля. Зоны френеля.
- •Дифракция параллельного пучка лучей на экране с длинной щелью. Дифракционный спектр. Условия минимумов.
- •Дифракционная решётка. Главные максимумы. Главные минимумы. Разрушающие способности. Угловая дисперсия. Формула вульфа- брэгта.
- •Поляризация света. Виды поляризации. Двойное лучепреломление.
- •Формулы Френеля. Закон брюста.
- •Тепловое излучение. Абсолютно чёрное тело. Закон стефана больцмана. Закон вина.
- •Корпускулярно-волновой дуализм света. Квант света. Энергия и импульс фотона. Внешний фотоэффект.
- •Световое давление. Опыты Лебедева. Эффект комптона.
- •Волновые свойчтва микрочастиц. Длина волны де Бройля. Волновая функция. Уравнение Шредингера.
- •Атом водорода. Теория Бора. Уровни энергии атома водорода. Кывантовые числа: главное, орбитальное, магнитное, спиновое.
- •Квантовая статистика. Фазовое пространство. Функция распределения. Понятие о квантовой статистике …
- •Вырожденный электронный газ в металлах. Вывод квантовой теории электропроводности металлов. Сверхпроводимость.
- •Контакт двух металлов по зональной теории. Термоэлектрические явления и их применение.
- •Ядерные силы. Энергия связи ядра. Энергетический эффект ядерной реакции. Закон радиоактивного распада. Время жизни ядра…
Гармонические электромагнитные колебьания и их хар-ки. Диф. Ур-ие гармонич. Колебаний и его решение.
Гармоническое колебание — явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:
или
где
х — значение изменяющейся величины, t
— время, остальные параметры — постоянные:
А — амплитуда колебаний, ω — циклическая
частота колебаний,
—
полная фаза колебаний,
— начальная фаза колебаний.
Обобщенное гармоническое колебание в дифференциальном виде
Любое нетривиальное[1] решение этого дифференциального уравнения — есть гармоническое колебание с циклической частотой )
Решение дифференциального уравнения
ешением дифференциального уравнения называется функция, обращающая это уравнение в тождество.
Нетрудно проверить прямой подстановкой, что в нашем случае решение имеет вид:
т.е.
является гармонической функцией. Значит
уравнение
это дифференциальное уравнение
гармонических колебаний.
№24
Дифференциальное уравнение затухающих электромагнитных колебаний и его решение. Декремент затухания. Апериодические колебания.
Сиотри 11 вопрос
№25
Дифференциальное уравнение вынужденных электромагнитных колебаний и его решение.
Смотри вопрос 10
№26
Электромагнитные волны. Основные свойства электромагнитных волн. Волновое уравнение для плоской электромагнитной волны и его решение. Энергия электромагнитных волн. Вектор умова-пой тинга.
ектромагни́тное излуче́ние (электромагнитные волны) — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля (то есть, взаимодействующих друг с другом электрического и магнитного полей).
Среди электромагнитных полей вообще, порожденных электрическими зарядами и их движением, принято относить собственно к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников — движущихся зарядов, затухая наиболее медленно с расстоянием.
Электромагнитное излучение подразделяется на
радиоволны (начиная со сверхдлинных),
инфракрасное излучение,
видимый свет,
ультрафиолетовое излучение,
рентгеновское излучение и жесткое (гамма-излучение) (см. ниже, см. также рисунок).
Электромагнитное излучение способно распространяться практически во всех средах. В вакууме (пространстве, свободном от вещества и тел, поглощающих или испускающих электромагнитные волны) электромагнитное излучение распространяется без затуханий на сколь угодно большие расстояния, но в ряде случаев достаточно хорошо распространяется и в пространстве, заполненном веществом (несколько изменяя при этом свое поведение).
Основными свойствами электромагнитных волн являются:
1)поглощение;
2)рассеяние;
3)преломление;
5)интерференция;
6)дифракция;
7)поляризация
Вектор Пойнтинга (также вектор Умова — Пойнтинга) — вектор плотности потока энергии электромагнитного поля, одна из компонент тензора энергии-импульса электромагнитного поля. Вектор Пойнтинга S можно определить через векторное произведение двух векторов:
где E и H — векторы напряжённости электрического и магнитного полей соответственно.
где E и H — векторы комплексной амплитуды электрического и магнитного полей соответственно.
Этот вектор по модулю равен количеству энергии, переносимой через единичную площадь, нормальную к S, в единицу времени. Своим направлением вектор определяет направление переноса энергии.
Поскольку тангенциальные к границе раздела двух сред компоненты E и H непрерывны (см. граничные условия), то вектор S непрерывен на границе двух сред.
№27