
- •1. Основные свойства капельных жидкостей. Плотность, удельный вес, сжимаемость. Тепловое расширение.
- •3.Растворение газов в жидкости. Идеальный и реальный газы. Уравнения состояния для идеального и реального газов.
- •4.Модель идеальной жидкости. Гидростатика, силы, действующие на жидкость. Давление в жидкости.
- •5. Свойства гидростатического давления. Дифференциальные уравнения равновесия жидкости (Уравнение Эйлера, вывод).
- •6. Интегрирование уравнений Эйлера. Поверхности равного давления. Основное уравнение гидростатики (вывод).
- •7. Уравнение гидростатического напора (вывод). Приборы для измерения давления.
- •8. Эпюра гидростатического давления. Закон Паскаля и его практические приложения.
- •9.Сила давления жидкости на плоскую стенку (вывод). Центр давления (вывод).
- •10.Сила давления жидкости на криволинейную стенку (вывод)
- •11. Закон Архимеда. Условия равновесия плавающих тел
- •12. Расчет толщины стенки трубы резервуаров
- •15. Гидродинамика. Понятие о местной мгновенной и осредненной скорости. Виды движения жидкости
- •16. Основные кинематические понятия. Траектория, линии тока, элементарная струйка, трубка тока. Свойства элементарной струйки. Поток жидкости
- •17. Смоченный периметр, гидравлический радиус. Расход жидкости. Уравнение расхода для элементарной струйки и для потока. Понятие средней скорости
- •18. Дифференциальные уравнения движения идеальной жидкости (уравнение Эйлера, вывод)
- •19. Уравнение Бернулли для элементарной струйки идеальной жидкости (вывод) и его энергетическая и геометрическая интерпретация.
- •20. Уравнение Бернулли для потока вязкой жидкости (вывод). Коэффициент Кориолиса, общие сведения о потерях энергии
- •21.Примеры применения уравнения Бернулли в технике. Расходомер Вентури, скоростная трубка, струйный насос.
- •22.Режимы движения жидкостей. Число Рейнольдса и его критические значения.
- •23.Ламинарный режим движения. Распределение касательных напряжений и осреднённых скоростей в поперечном сечении круглой трубы (вывод).
- •24.Определение расхода в цилиндрической трубе при лрд. Потери напора по длине, формула Пуазейля.
- •25.Особые случаи ламинарного течения. Течение с теплообменом и с облитерацией. Начальный участок потока при лрд.
- •2 6.Турбулентный режим движения трд. Структура потока при трд, распред-е скоростей и касат. Напряжений по сечению потока. Гидрав-ски гладкие и шероховатые трубы.
- •27.Зоны сопротивления. Формулы для определения коэф-та Дарси в различных зонах.
- •28.Местные гидравлич. Сопротивления. Внезапное расширение и сужение потока, поворот потока.
- •29.Местные потери при ламинарном режиме движения. Эквивалентная длина.
- •30.Истечение жидкости через малое отверстие в тонкой стенке. Определение скорости и расхода при истечении через малое отверстие в тонкой стенке (вывод).
- •31. Истечение жидкости через малое затопленное отверстие. Определение скорости и расход.
- •32.Истечение жидкости через насадки. Определение скорости и расхода при истечении через внешний цилиндрический насадок.
- •33.Истечение при переменном напоре. Расчет времени частичного либо полного опорожнения призматического резервуара.
- •34.Гидравлический расчет трубопроводов. Классификация трубопроводов, основные расчетные зависимости. Расчет простого трубопровода.
- •35.Основные задачи при расчете трубопроводов и методы их решения.
- •36.Последовательное и параллельное соединение трубопроводов. Основные расчетные зависимости.
- •37.Разветвленный и сложный трубопроводы. Основные расчетные зависимости.
- •38.Гидравлический удар. Формула Жуковского для прямого и не прямого удара (вывод).Скорость распространения ударной волны при гидравлическом ударе.
- •39.Сила воздействия струи на преграду. Теорема импульсов.
- •40.Лопостные гидромашины. Гидродинамические передачи.Общие сведения. Основные параметры насосов.(напор, подача, давление . Мощность , кпд).
- •41.Потери энергии в насосах, кпд насоса. Центробежные насосы, устройство, принцип действия.
- •42. Уравнение Эйлера для насоса и турбины
- •43.Полезный напор и действительная подача. Влияние угла лопасти β на напор насоса.
- •44. Характеристика центробежного насоса. Оптимальный режим работы насоса.
- •45 Основвы теории подобия насосов. Формулы подобия
- •46. Коэффициент быстроходности насоса ns и типы лопастных насосов.
- •48. Регулирование подачи насоса. Регулирование задвижкой и частотой вращения вала насоса.
15. Гидродинамика. Понятие о местной мгновенной и осредненной скорости. Виды движения жидкости
Гидродинамика (от гидро... и динамика), раздел гидромеханики, в котором изучаются движение несжимаемых жидкостей и взаимодействие их с твёрдыми телами. Методами Гидродинамика можно исследовать также движение газов, если скорость этого движения значительно меньше скорости звука в рассматриваемом газе. При скорости движения газа, близкой к скорости звука или превышающей её, начинает играть заметную роль сжимаемость газа и методы Гидродинамика уже неприменимы.
Скорости движения частиц жидкости в данной точкев данный момент времени называют мгновенными местными скоростями u в даннойточке или просто мгновенными скоростями.
Поскольку мгновенная скорость u в данной точке изменяется во времени, в гидродинамике для удобства исследования потока вводится понятие усредненной скорости ( u ), которую иногда называют средней местной скоростью. Это средняя скорость в данной точке за достаточно большой промежуток времени:
Неустановившееся движение – такое, при котором в любой точке потока скорость движения и давление с течением времени изменяются, т.е. u и P зависят не только от координат точки в потоке, но и от момента времени, в который определяются характеристики движения т.е.:
и
.
Примером неустановившегося движения может являться вытекание жидкости из опорожняющегося сосуда, при котором уровень жидкости в сосуде постепенно меняется (уменьшается) по мере вытекания жидкости.
Установившееся движение – такое, при котором в любой точке потока скорость движения и давление с течением времени не изменяются, т.е. u и P зависят только от координат точки в потоке, но не зависят от момента времени, в который определяются характеристики движения:
и
,
и,
следовательно,
,
,
,
.
16. Основные кинематические понятия. Траектория, линии тока, элементарная струйка, трубка тока. Свойства элементарной струйки. Поток жидкости
Траекторией называется путь, проходимый данной частицей жидкости в пространстве за определенный промежуток времени.
При установившемся движении форма траекторий не изменяется во время движения. В случае неустановившегося движения величины направления и скорости движения любой частицы жидкости непрерывно изменяются, следовательно, и траектории движения частиц в этом случае также постоянно изменяются во времени.
Поэтому для рассмотрения картины движения, образующейся в каждый момент времени, применяется понятие линии тока.
Линия тока - это кривая, проведенная в движущейся жидкости в данный момент времени так, что в каждой точке векторы скорости ui совпадают с касательными к этой кривой.
Нужно различать траекторию и линию тока. Траектория характеризует путь, проходимый одной определенной частицей, а линия тока направление движения в данный момент времени каждой частицы жидкости, лежащей на ней.
При установившемся движении линии тока совпадают с траекториями частиц жидкости. При неустановившемся движении они не совпадают, и каждая частица жидкости лишь один момент времени находится на линии тока, которая сама существует лишь в это мгновение. В следующий момент возникают другие линии тока, на которых будут располагаться другие частицы. Еще через мгновение картина опять меняется.
Если выделить в движущейся жидкости элементарный замкнутый контур площадью dЙ и через все точки этого контура провести линии тока, то получится трубчатая поверхность, которую называют трубкой тока. Часть потока, ограниченная поверхностью трубки тока, называется элементарной струйкой жидкости. Таким образом, элементарная струйка жидкости заполняет трубку тока и ограничена линиями тока, проходящими через точки выделенного контура с площадью dЙ. Если dЙ устремить к 0, то элементарная струйка превратится в линию тока.
При установившемся движении элементарные струйки жидкости обладают рядом свойств:
· площадь поперечного сечения струйки и ее форма с течением времени не изменяются, так как не изменяются линии тока;
· проникновение частиц жидкости через боковую поверхность элементарной струйки не происходит;
· во всех точках поперечного сечения элементарной струйки скорости движения одинаковы вследствие малой площади поперечного сечения;
· форма, площадь поперечного сечения элементарной струйки и скорости в различных поперечных сечениях струйки могут изменяться.
Трубка тока является как бы непроницаемой для частиц жидкости, а элементарная струйка представляет собой элементарный поток жидкости.
При неустановившемся движении форма и местоположение элементарных струек непрерывно изменяются.
Поток жидкости - как явление - движение массы жидкости, ограниченной системой поверхностей твердых тел и/или поверхностей соприкосновения жидких и газообразных тел.