
- •Понятие архитектуры эвм. Эволюция универсальных эвм. Поколения эвм. Элементная база эвм.
- •Основы классификации эвм. Классификационные признаки. Принципы устройства последовательной эвм (архитектура фон Неймана). Технические показатели эвм.
- •Архитектура универсальной эвм с последовательным выполнением команд. Функциональное назначение, физические принципы действия и организация основных блоков.
- •Серия ibm-совместимых пэвм (ibm pc). Основные современные конфигурации. Технические показатели и характеристики. Другие типы аппаратных платформ пэвм.
- •Блочно-функциональное устройство персонального компьютера с магистральной организацией ( общей системной шиной ). Понятие открытой архитектуры.
- •Внутренние интерфейсы эвм. Системные и локальные шины. Контроллер шины. Иерархическая организация шин.
- •Контроллер шины
- •Основы систем счисления. Методы представления чисел и операции в позиционных системах счисления с различным основанием. Системы счисления в эвм.
- •Внутренняя организация числовых и символьных данных в эвм. Машинные форматы числовых данных пэвм. Стандарты кодировок символьной информации (ascii, unicode) и десятичных чисел (код bcd).
- •Кодировка ascii
- •Кодировка (encoding) Юникод - Unicode
- •Машинный формат с фиксированной точкой (Fixed Point Representation). Специальные коды для представления знаковых целых двоичных чисел и операций с ними(прямой, обратный, дополнительный).
- •11. Машинный формат с плавающей точкой (Float Point Representation). Параметры форматов сопроцессора intel (fpu 80x87).
- •Функционально-логическая организация микропроцессоров серии intel 80x86. Основные блоки и устройства: - назначение, функции, принципы действия. Режимы работы мп и способы адресации операндов.
- •Программная модель мп Intel (ia-32). Система регистров мп. Назначение, типы регистров. Регистры прикладного программиста. Флаги.
- •Специальные типы регистров защищенного режима мп (ia-32): управляющие, отладки, системные адресные регистры. Селекторы сегментов: - организация в разных режимах.
- •Регистровая (локальная) память мп. Сверхбыстрая буферная память. Внешний и внутренний кэш: - алгоритмы обслуживания. Стековая (магазинная) память. Fifo - буфера.
- •Специализированные процессоры. Числовой арифметический сопроцессор intel 80x87(fpu). Программная (регистровая) модель. Форматы данных. Система команд.
- •Оперативная (основная) память эвм (озу). Назначение, программная модель. Элементная база озу.
- •Системы памяти в эвм. Иерархия запоминающих устройств. Оперативная и долговременная внешняя память.
- •Типы запоминающих устройств внешней памяти эвм. Методы моделирования цифровых (двоичных) данных. Общая организация носителей данных, технические характеристики.
- •Программная модель памяти эвм. Иерархическая структура памяти. Концепция виртуальной памяти. Страничное распределение памяти.
- •21. Сегментная и страничная модели оперативной памяти (на платформе Intel). Системные адресные регистры цп, таблицы дескрипторов сегментов.
- •22.Специальные типы организации памяти: - стековая (магазинная) память, fifo-буфера. Сегмент стека, команды цп для работы со стеком
- •23. Физическая организация внешней долговременной памяти эвм (дзу). Дисковая магнитная память.
- •24. Постоянные запоминающие устройства (пзу). Базовая система ввода-вывода (bios) и ее функции. Конфигурационная память (cmos), ее свойства и назначение. Часы реального времени (rtc).
- •25. Интерфейсы пэвм. Системные и локальные шины. Интерфейсы дисковых накопителей и периферийных устройств. Стандарты и технические характеристики.
- •Интерфейс scsi
- •26. Организация взаимодействия элементов эвм под управлением цп. Цикл выполнения команд. Циклы шины. Система прерываний. Типы прерываний
- •27. Система прерываний эвм. Назначение, роль и место в общей организации управления и взаимодействия в эвм. Типы прерываний.
- •28. Обслуживание запросов внешних устройств. Аппаратные (асинхронные) прерывания. Контроллер прерываний pic. Линии запросов на прерывание - irq. Исключительные ситуации цп.
- •29. Программные (синхронные) прерывания, команды прерывания мп. Сервисы bios, как программные прерывания.
- •30. Процедуры обработчиков прерывания Таблицы дескрипторов (векторов) прерываний в защищенном и реальном режимах работы процессора intel.
- •31. Организация ввода-вывода. Принципы обмена информацией цп с внешними устройствами. Порты ввода-вывода. Устройства ввода: - клавиатура, мышь. Динамик pc.
- •32. Видеоподсистема пэвм. Принципы формирования изображений. Элементы видеоподсистемы: - монитор, видеоконтроллер, видеопамять. Видеорежимы.
- •33. Периферийное оборудование пэвм. Обзор основных устройств: - принципы действия, функциональное назначение, интерфейс с компьютером.
- •34. Системный (ассемблерный) отладчик ос ms-dos - debug. Интерактивные типы отладчиков.
- •35. Ассемблер для микропроцессоров с архитектурой intel 80x86. Общая характеристика языка, основные особенности и возможности. Инструментальные системы для разработки программ на языке Ассемблера.
- •36. Алфавит языка Ассемблер. Базовые синтаксические элементы (лексемы) языка. Предложения: - команды, директивы, комментарии. Синтаксис команд и директив. Резервированные идентификаторы.
- •37. Структура программ на языке Ассемблер. Программные сегменты. Типы, описание, назначение. Макроопределения. Специальные директивы компилятора. Определение именованных констант.
- •Include - Вложить другой файл
- •38. Форматы загрузочных (исполняемых) модулей типа *.Exe и *.Com. Загрузка программ, инициализация сегментных регистров. Префикс программного сегмента. (psp).
- •39. Типы данных Ассемблера. Константы. Директивы описания и инициализации данных, директивы эквивалентности (описания констант). Формат директив.
- •40. Директивы описания сегментов. Процедуры в Ассемблере. Вызовы и возвраты (дальние и ближние).
- •Система команд Ассемблера. Основные типы команд и их классификация. Синтаксис (формат записи) команд. Способы адресации операндов.
- •Методы адресации
- •Команды пересылки данных. Операции со стековой памятью. Арифметические команды Ассемблера. Команды пересылки данных
- •Арифметические команды
- •Логические команды. Команды сдвига. Команды прямой манипуляции с битами. Логические команды
- •44. Команды программной передачи управления. Команды переходов
- •Команды обработки строк. Префиксы повторения.
- •Организация циклов в Ассемблере. Команды управления циклами. Организация циклов
- •Режимы адресации операндов в командах Ассемблера. Косвенная адресация. Модификация адресов, и индексирование.
- •48. Команды управления состоянием микропроцессора.
- •Моделирование структурных типов данных в Ассемблере (строки, векторы, матрицы, записи, структуры). Организация обработки структурных данных.
- •Двухмерные массивы
- •Структуры
- •Описание шаблона структуры
- •Определение данных с типом структуры
- •Объединения
- •Описание записи
- •Определение экземпляра записи
- •Функциональное обслуживание устройств на уровне ос ms-dos. Прерывания dos. Программный интерфейс ms-dos - прерывание int 21h. Основные группы функций. Прерывания dos
- •Получение системной информации.
- •Символьный ввод/вывод.
- •Работа с файловой системой.
- •Управление программами.
- •Управление памятью.
- •Связь с драйверами устройств.
Внутренняя организация числовых и символьных данных в эвм. Машинные форматы числовых данных пэвм. Стандарты кодировок символьной информации (ascii, unicode) и десятичных чисел (код bcd).
Представление числовой информации. Исторически первым видом данных, с которым стали работать компьютеры, были числа. Первые ЭВМ использовались исключительно для математических расчетов. В соответствии с принципами Джона фон Неймана, ЭВМ выполняет расчеты в двоичной системе счисления. Вопрос о внутреннем (машинном) представлении чисел рассмотрим несколько подробнее, чем это делается в учебниках.
Структурные единицы памяти компьютера — бит, байт и машинное слово. Причем понятия бита и байта универсальны и не зависят от модели компьютера, а размер машинного слова зависит от типа процессора ЭВМ. Если машинное слово для данного компьютера равно одному байту, то такую машину называют 8-разрядной (8 бит); если машинное слово состоит из 2 байтов, то это 16-разрядный компьютер; 4-байтовое слово у 32-разрядных ЭВМ. Обсуждение вопроса о том, как представляются числа в памяти ЭВМ, будем вести на примере 16-разрядной машины.
Числа в памяти ЭВМ хранятся в двух форматах: в формате с фиксированной точкой и в формате с плавающей точкой. Под точкой здесь и в дальнейшем подразумевается знак разделения целой и дробной части числа. Формат с фиксированной точкой используется для хранения в памяти целых чисел. В этом случае число занимает одно машинное слово памяти (16 бит). Чтобы получить внутреннее представление целого положительного числа N в форме с фиксированной точкой нужно:
1) перевести число N в двоичную систему счисления;
2) полученный результат дополнить слева незначащими нулями до 16 разрядов.
Например, N = 160710= 110010001112. Внутреннее представление этого числа в машинном слове будет следующим:
0000 |
0110 |
0100 |
0111 |
В сжатой шестнадцатеричной форме этот код запишется так: 0647.
Представление символьной информации. В настоящее время одним из самых массовых приложений ЭВМ является работа с текстами. Термины «текстовая информация» и «символьная информация» используются как синонимы. В информатике под текстом понимается любая последовательность символов из определенного алфавита. Совсем не обязательно, чтобы это был текст на одном из естественных языков (русском, английском и др.). Это могут быть математические или химические формулы, номера телефонов, числовые таблицы и пр. Будем называть символьным алфавитом компьютера множество символов, используемых на ЭВМ для внешнего представления текстов.
Первая задача — познакомить учеников с символьным алфавитом компьютера. Они должны знать, что
— алфавит компьютера включает в себя 256 символов;
— каждый символ занимает 1 байт памяти.
Эти свойства символьного алфавита компьютера, в принципе, уже знакомы ученикам. Изучая алфавитный подход к измерению информации, они узнали, что один символ из алфавита мощностью 256 несет 8 бит, или 1 байт, информации, потому что 256 в 28. Но поскольку всякая информация представляется в памяти ЭВМ в двоичном виде, следовательно, каждый символ представляется 8-разрядным двоичным кодом. Существует 256 всевозможных 8-разрядных комбинаций, составленных из двух цифр «0» и «1» (в комбинаторике это называется числом размещений из 2 по 8 и равно 28): от 00000000 до 11111111. Удобство побайтового кодирования символов очевидно, поскольку байт — наименьшая адресуемая часть памяти и, следовательно, процессор может обратиться к каждому символу отдельно, выполняя обработку текста. С другой стороны, 256 символов — это вполне достаточное количество для представления самой разнообразной символьной информации.
Далее следует ввести понятие о таблице кодировки. Таблица кодировки — это стандарт, ставящий в соответствие каждому символу алфавита свой порядковый номер. Наименьший номер - 0, наибольший - 255. Двоичный код символа — это его порядковый номер в двоичной системе счисления. Таким образом, таблица кодировки устанавливает связь между внешним символьным алфавитом компьютера и внутренним двоичным представлением.
Международным стандартом для персональных компьютеров стала таблица ASSII. На практике можно встретиться и с другой таблицей — КОИ-8 (Код Обмена Информацией), которая используется в глобальных компьютерных сетях, на ЭВМ, работающих под управлением операционной системы Unix, а также на компьютерах типа PDP. Представление графической информация. Существуют два подхода к решению проблемы представления изображения на компьютере: растровый и векторный. Суть обоих подходов в декомпозиции, т.е. разбиении изображения на части, которые легко описать.
Растровый подход предполагает разбиение изображения на маленькие одноцветные элементы — видеопиксели, которые, сливаясь, дают общую картину. В таком случае видеоинформация представляет собой перечисление в определенном порядке цветов этих элементов. Векторный подход разбивает всякое изображение на геометрические элементы: отрезки прямой, эллиптические дуги, фрагменты прямоугольников, окружностей, области однородной закраски и пр. При таком подходе видеоинформация — это математическое описание перечисленных элементов в системе координат, связанной с экраном дисплея. Векторное представление более всего подходит для чертежей, схем, штриховых рисунков.