
- •Часть II. Динамика механизмов и машин
- •1. Постановка задачи силового расчета. Силы, действующие в механизме. Уравнения движения системы. Кинематические пары, накладывающие идеальные связи.
- •2. Уравнения кинетостатики. Кинетостатическая модель.
- •3. Определение главного вектора и главного момента сил инерции (общий случай; поступательное движение).
- •4. Определение главного вектора и главного момента сил инерции (вращение вокруг неподвижной оси; плоское движение).
- •5. Решение уравнений кинетостатики. Особенности расчёта плоского механизма. Пример с одноподвижным механизмом.
- •6. Особенности расчёта плоского механизма. Пример с многоподвижным механизмом.
- •7. Применение общего уравнения динамики для силового расчета механизмов (одноподвижных и многоподвижных). Пример с рычажным механизмом.
- •8. Применение общего уравнения динамики для определения реакции в кинематической паре.
- •9. Расчет кулачкового механизма методом кинетостатики и с помощью общего уравнения динамики.
- •10. Трение в кинематических парах. Трение скольжения, качения и верчения. Модель высшей кп с точечным контактом.
- •11. Трение в кинематических парах. Динамические модели поступательной пары в плоском механизме с учетом трения.
- •12. Трение в кинематических парах. Динамические модели вращательной пары в плоском механизме с учетом трения.
- •13. Трение в кинематических парах. Червячная пара.
- •14. Трение в кинематических парах. Винтовая пара.
- •15. Силовой расчёт механизмов с учетом трения в кинематических парах методом последовательных приближений. Пример: кривошипно-ползунный механизм.
- •17. Силовой расчет червячной передачи с учетом трения в вкп. Режимы: тяговый, инверсный тяговый, оттормаживания, самоторможения.
- •18. Определение приведенного момента инерции и приведенного момента сил сопротивления (для рычажного и зубчатого механизма).
- •19. Уравнения Лагранжа 2-го рода для многоподвижного механизма.
- •20. Внутренняя виброактивность механической системы цикловой машины.
- •21. Способы уменьшения возмущающего момента. Разгружатели возмущающего момента и инерционной нагрузки, динамические гасители колебаний.
- •22. Внешняя виброактивность механизма и машины. Уравновешивание механизмов и машины.
- •23. Внешняя виброактивность вращающегося ротора и роторной машины. Уравновешивание роторов.
- •24. Виброактивность плоского механизма. Уравновешивание плоского механизма конструктивным методом и установкой противовесов на звенья.
- •25. Виброактивность плоского механизма. Уравновешивание первых гармоник сил инерции.
- •26. Потери энергии на трение в цикловых механизмах. Кпд механизма.
- •27. Механические характеристики двигателей (пример с электрическим двигателем постоянного тока независимого возбуждения).
- •28. Уравнения движения машины. Режимы движения
- •29. Определение средней угловой скорости установившегося режима движения цикловой машины. Устойчивость и чувствительность установившегося режима движения к изменению нагрузки.
- •30. Определение динамической ошибки цикловой машины в установившемся режиме при учете статической характеристики двигателя. Коэффициент неравномерности вращения.
- •31. Движущий момент в установившемся режиме при учёте статической характеристики двигателя. Влияние неравномерности вращения машины на потери энергии двигателя.
- •32. Динамические нагрузки в передаче в установившемся режиме при учёте статической характеристики двигателя. Способы уменьшения динамических ошибок и динамических нагрузок.
- •33. Влияние динамической характеристики двигателя на установившееся движение машины. Двигательный резонанс.
- •34. Разбег машины с учетом статической характеристики двигателя. Определение закона движения и динамического момента в передаточном механизме.
- •35. Разбег машины с учетом динамической характеристики двигателя. Торможение машины.
8. Применение общего уравнения динамики для определения реакции в кинематической паре.
К
онструктивными
элементами, образующими высшую
кинематическую пару, являются поверхности,
принадлежащие сопрягаемым звеньям. В
одних случаях эти поверхности в каждом
положении механизма касаются в некоторой
точке, в других – касание происходит
по некоторой линии. При точечном контакте
абсолютно твердых звеньев и при отсутствии
сил трения реакции в кинематической
паре сводятся к силе Rn,
направленной по общей нормали к
контактирующим поверхностям. Такая
пара является пятиподвижной, и в ней
возникает одна неизвестная компонента
реакции (рис.4.12, а).
При линейном контакте силы взаимодействия
(при отсутствии трения) распределены
вдоль линии контакта и направлены в
каждой точке по общей нормали к
поверхностям (рис.4.12, б).
В
плоском кулачковом механизме (рис.4.13)
линией контакта является прямая, силы
взаимодействия лежат в одной плоскости
и приводятся к главному вектору
,
направленному по нормали к поверхности
кулачка, и главному моменту
,
вектор которого лежит в плоскости,
касательной к профилю. В этом случае
высшая кинематическая пара является
четырехподвижной.
Аналогичная картина возникает в прямозубых и косозубых эвольвентных цилиндрических передачах. Здесь, правда, в зацеплении могут одновременно находиться несколько пар зубьев, но все силы контактного взаимодействия лежат в одной плоскости, проходящей через линию зацепления и параллельной осям вращения колес. В конических, червячных и гипоидных передачах линия контакта (если она существует) может оказаться пространственной. При этом и силы взаимодействия образуют пространственную систему: появляются дополнительные компоненты реакций, обычно оказывающиеся «лишними» неизвестными при составлении уравнений силового расчета. В таких случаях идут на упрощение модели кинематической пары, оставляя одну неизвестную компоненту реакции Rn и тем самым переходя к условной схеме точечного взаимодействия. Следует отметить, что при силовом расчете тяжело нагруженных зубчатых передач «жесткая» модель контактного взаимодействия без учета сил трения дает лишь весьма приближенные представления о силовых нагрузках. Чаще всего определение этих нагрузок, связанное с прочностными расчетами, опирается на более сложные модели силового взаимодействия, учитывающие упругую деформацию зубьев, влияние смазки и т.п. Однако рассмотрение таких моделей выходит за рамки этого курса.
9. Расчет кулачкового механизма методом кинетостатики и с помощью общего уравнения динамики.
Рассмотрим кулачковый механизм, состоящий из кулачка 1 и поступательно движущегося толкателя 2 (рис.4.14).
Механизм
содержит две низших кинематических
пары (O
и B)
и одну высшую (A).
В плоскости движения во вращательной
паре две неизвестных компоненты реакции
– R01x
и R01y,
в поступательной – R02
и
,
и в высшей кинематической паре –
нормальная сила R12n=
– R21n.
Вместе с обобщенной силой Q
имеем шесть неизвестных. Для их отыскания
можем составить шесть уравнений
кинетостатики, которые при равномерном
вращении кулачка имеют следующий вид:
R01x + Ф1cos t + R12nsin = 0,
R01y + Ф1 sin t – R12n cos – G1 = 0,
Q – R12n ecos – R12n sin (h0 + s) – G1 sin t = 0,
R02 – R12n sin = 0,
R12n cos – P – Pпр – Ф2 – G2 = 0,
Здесь t – угол между радиусом 0С1 (С1 – центр масс кулачка) и осью x, 1= 0С1, – угол давления, Ф1 и Ф2 – силы инерции кулачка и толкателя, G1 и G2 – силы тяжести, Рпр – сила, создаваемая пружиной, прижимающей толкатель к кулачку.