 
        
        - •1.Объективная необходимость автоматизации. История теории автоматизированного управления.
- •2.Основные понятия и определения тау. Управление. Стадии управления. Система управления.
- •3.Классификация систем управления. Понятия: подсистема, структура, связь, состояние, поведение, цель.
- •3.Классификация систем.
- •5.Этапы управления.
- •6. Моделирование объектов управления. Классификация моделей.
- •7. Основные аспекты теории автоматизированного управления. Виды иерархий.
- •8. Функциональная часть асу. Функциональные подсистемы.
- •9. Обеспечивающая часть асу.
- •10. Классификация асу.
- •11. Классификация асу
- •12. Поддержка принятия решений в асу. Формаллизация и алгоритмизация.
- •14 . Разновидности интеллект систем.:
- •15.Принятие решений в условиях риска.
- •16.Условия неопределённости.Критерии Лапласа,Вальда.
- •17.Многокритериальные задачи принятия решений.
- •18 Многокритериальные задачи принятия решений..Принцип справедливой уступки.
- •19. Принцип выделения одного критерия. Принцип последовательной уступки. Свертка локальных критериев.
- •20. Многокритериальные задачи принятия решения. Способы нормализации локальных критериев. Способы задания и учета приоритетов локальных критериев.
- •21. Проектирование асу. Основные принципы построения асу.
- •22.Общая характеристика проектирования асу. Особенности проектирования асу. Факторы, определяющие риск проекта.
- •23. Этапы разработки асу.
- •24. Реорганизация деятельности предприятия. Методики
- •25. Создание асу при подсистемном построении. Создание асу при процедурном построении.
- •26. Оценка качества асу. Дефекты. Критерии качества. Взаимосвязь компонентов качества асу.
- •27. Case-технологии
- •28. Асутп и диспетчерское управление.
- •29. Scada системы
- •30. Классификация методов получения математического описания объектов управления.
- •34.Классификация регуляторов
- •35.Выбор типа регулятора.
- •36.Определение настроек регулятора. Аналитический (Формульный) метод.
- •37.Определение настроек регулятора. Экспериментальные методы настройки регулятора
- •38. Цифровые регуляторы. Цифровой пид-регулятор
- •39. Выбор периода квантования цифрового пид-регулятора.Настройка цифров. Пид-регул.
- •40. Языки программирования промышл. Контроллеров Общая хар-ка
- •41.Система проектирования UltraLogic. Особенности системы UltraLogic
- •42. Архитектура системы ultralogic
- •43.Базовые концепции системы UltraLogic.
- •44.Менеджер проектов системы UltraLogic.
- •45.Конфигурирование контроллеров в UltraLogic.
- •46.Загрузка и отладка программ в системе UltraLogic.
- •47.Базовые функции языка fbd. Логические функции.
- •48.Базовые функции языка fbd. Функции сравнения.
- •48.Базовые функции языка fbd. Арифметические функции.
- •48.Базовые функции языка fbd. Функции управления.
14 . Разновидности интеллект систем.:
1)Интеллектуально информационно-поисковые системы-явл система взаимод с проблемно-ориентир БД на естеств языке
2)Экспериментные системы-
3)Расчетно логические системы-позволяют решать управленческие и проэктные задачи по их описанию и исходным данным вне зависимости от сложности модели.Каждому пользователю предоставл возможно контролировать выполнение процесса.основные свойства реализованы б знаний.
4)гибридные системы.в них представлена возможность учета характеристик мира.
15.Принятие решений в условиях риска.
В этих условиях выбираемая стротегия управления связана с множеством возможных исходов,причем кажд исход имеет вероятность появления,заранее известного ЛПР.В этих условиях для решения используют два правила.
-Искусственное сведение к детерминированию:
-оптимизация
в среднем: заключается в переходе от
исход показател эффективности явления
к её усредненной статичной
характеристике.исходный показатель
эффективности опис формулой 
В-массив известных статич характеристик используемых величин
f-закон распределения вероятностей
 
16.Условия неопределённости.Критерии Лапласа,Вальда.
Отсутствует однозначная связь между выбоом стротегии и решением.В общем случае неопределенность может быть вырожена либо противодействием разумного противника,либо недостаточн освеломленностью об условиях в котор осуществл выбор решения.принятие решения в условиях различных противодействующ теорий.
Критерий Лапласа
П оскольку
вероятности возможной или иной ситуации
неизвестны,предпологают что они
равновероятностны,тогда для каждой
строки матрицы выполн подстановка сред
арифметич значений оценок.оптимал
решению соответств такое которое
соответств максимальному знач сред
арифметич
оскольку
вероятности возможной или иной ситуации
неизвестны,предпологают что они
равновероятностны,тогда для каждой
строки матрицы выполн подстановка сред
арифметич значений оценок.оптимал
решению соответств такое которое
соответств максимальному знач сред
арифметич
.
Критерий вальда
В
каждой строке матрицы выбир мин
оценка.оптимальное решение соответств
то,котор дает максимум этого минимума 
Критерий гурвица
При реализации вводят коэфиц оптимизации 0<(альфа)<1. В каждой строке матрицы находят самые большие оценки и минимальные оценки max aij min aij
Они
умножаются на альфа и 1-альфа
соответственно.оптимал решение которое
max
этой суммы. 
Критерий севиджа
В каждом столбце матриц находят max оценку max aij и составл новые матрицы элементы котор определяются соответств
Rij=max aij-aij
Выбор значен при котор матриц риска принимает минимал значения.критерий заключается в минимизации риска.
17.Многокритериальные задачи принятия решений.
Чаще принимаем решения рассматр в качестве совокупности критериев f1,f2… каждый из этих критериев характериз коэффициентом относительно важности лямда1, лямда2…. Совокупность критериев образует интегральный критерий F={fk}
Каждый
критерий характериз какое либо качество
приним решения. Оптимал решение может
быть условно записано след образом 
F-оптимал критерия. X-оптимал значен управляемого параметра. Лямда-вектор важности. Wx-ОДЗ.
ОДЗ Wxможно разбить на 2 непересек подобласти.
1)Wxc-область согласия,в которой качество приним решений может быть улучшена по одному или несколк критериям.
2)Wxk область компромиссов.
Принцип равномерности.
В ыбирается
такое вариант решения, при котором дост
равномерность показателей по всем
критериям.использ след реализацию:
ыбирается
такое вариант решения, при котором дост
равномерность показателей по всем
критериям.использ след реализацию:
А)принцип равенства
В этом случае выб вариант при котор все значения критериев равны между собой
Б)------------ max min
F*=optF=maxmin fij для каждого из вариантов выбир min значен критерия.выбирается вариант в котором этот min достигает max/равномерность обеспеч за счет подтягивания критериев с наименьшим значением показателея
В)------------ квариравентсва
Так как не удается достич принципа равенста,то используется этот.лучшим признается вариант в котором критерии наиболее близки к этому равенству.
