
- •1 Электрический заряд и его свойства. Законы сохранения и квантования заряда. Взаимодействия зарядов. Закон Кулона. Характеристики неточечных зарядов.
- •2.Электрическое поле, его характеристики- напряженность, индукция и потенциал. Графическое изображение полей. Поле точечного заряда. Сложение электрических полей.
- •3.Метод вычисления напряженности. Применение принципа суперпозиции для вычисления электрических полей неточечных зарядов. Напряжённость электрического поля точечного заряда
- •4.Поток напряженности электрического поля. Теорема Остроградского-Гаусса. Примеры применения теоремы Гаусса для расчета электрических полей.
- •Циркуляция вектора напряженности
- •6.Связь между напряженностью эл. Поля и потенциалом. Градиент потенциала. Вычисление потенциала для неточечных зарядов.
- •7.Микроскопическое строение диэлектрика. Жесткий и мягкий диполь в электрическом поле.
- •8.Поляризация диэлектрика. Вектор поляризации, диэлектрическая восприимчивость. Поверхностные связанные заряды.
- •9.Электрическое поле в диэлектрике. Физический смысл относительной диэлектрической проницаемости. (Связь векторов поляризации, напряженности и индукции).
- •10.Сегнетоэлектрики, диэлектрический гистерезис, домены. Пьезоэлектрический эффект.
- •11.Проводники. Условия равновесия зарядов в проводнике. Распределение избыточных неподвижных зарядов в проводнике.
- •Равновесное распределение зарядов на проводниках.
- •12.Проводники во внешнем электрическом поле. Возникновение наведенного заряда на проводнике.
- •13.Электроемкость. Емкость шара. Заземление. Емкость конденсатора, системы конденсаторов.
- •14. Энергия системы точечных зарядов. Энергия заряженного проводника. Энергия эл. Поля. Плотность энергии эл. Поля.
- •15.Постоянный электрический ток. Основные понятия: сила тока, эдс, напряжение, разность потенциалов, сопротивление проводника и полупроводника.
- •]Эдс индукции
- •Электрический ток в полупроводниках
- •16.Закон Ома в интегральной форме для однородного и неоднородного участков и замкнутой цепи. Закон Ома в дифференциальной форме .
- •2.3 Законы Ома в интегральной форме
- •2.3.1 Закон Ома в дифференциальной форме
- •18. Классическая электронная теория электропроводности. Вывод закона Ома.
- •19.Вывод закона Джоуля-Ленца. Недостатки классической теории.
- •20. Правила Кирхгофа. Их применение в расчета сопротивления проводников. Первый закон
- •Второй закон
- •21. Магнитное поле. Вектор магнитной индукции. Напряженность магнитного поля. Закон Био-Савара-Лапласса.
- •22.Применение закона Био-Савара-Лапласса для расчета индукции магнитного поля прямого тока.
- •23.Применение закона Био-Савара-Лапласса для расчета индукции магнитного поля в центре на оси кругового тока. Магнитный момент кругового тока.
- •24. Закон Ампера. Взаимодействие прямых длинных параллельных токов.
- •Два параллельных проводника
- •25.Магнитный диполь. Поведение магнитного диполя в однородном и неоднородном магнитном поле.
- •26.Вихревой характер магнитного поля. Закон полного тока, его применение для расчета магнитного поля соленоида и тороида. Вихревой характер магнитного поля
- •27. Магнитный поток. Теорема Гаусса для магнитного поля. Работа, совершаемая при перемещение проводника и рамки с током в магнитном поле.
- •Теорема Гаусса для магнитной индукции
- •28. Сила Лоренца, ее характеристики. Формула Лоренца. Движение заряженных частиц в магнитном и электрическом поле.
- •29.Эффект Холла, его объяснение.
- •Свойства
- •30.Магнетики. (Электронные микротоки в атоме). Прецессия электронов в атоме в магнитном поле. Магнитные свойства атомов и молекул.
- •Определение
- •Магнитный момент атома
- •31.Магнитное поле в веществе, сущность намагничивания. Вектор намагничивания. Магнитная восприимчивость и относительная магнитная проницаемость вещества.
- •32. Виды магнетиков(диамагнетики, парамагнетики, ферромагнетики) Зависимость их свойств от напряженности магнитного поля.
- •33.Ферромагнетики. Явление гистерезиса. Домены(в 10 вопросе). Точка Кюри.
- •34. Явление электромагнитной индукции. Закон Фарадея. Правила Ленца. Связь явления эми и закона сохранения энергии.
- •Физическая суть правила
- •35. Причины возникновения эдс индукции в неподвижном контуре, вращающимся контуре, движущимся проводнике.
- •36.Явление самоиндукции. Эдс самоиндукции. Индуктивность. Изменение тока в цепи при включении эдс.
- •38.Применение явления эми. Токи Фуко. Скин-эффект. Явление взаимной индукции. Трансформаторы.
- •39.Энергия магнитного поля. Плотность энергии магнитного поля.
- •40.Колебательный контур без активного сопротивления. Свободные электрические колебания. Параметры колебаний.
- •Характеристики
- •41.Затухающие электрические колебания. Логарифмический декремент затухания.
- •42.Вынужденые электрические колебания. Переменный ток.
- •43.Резонанс напряжений. Резонанс токов. Мощность в цепи переменного тока.
- •44.Электромагнитное поле. Теория Максвелла. Понятие о токе смещения.
- •[Править]Точная формулировка
- •45.Интегральные уравнения Максвелла.
- •46.Электромагнитные волны. Излучение эмв. Свойства эмв. Шкала эмв.
- •Шкала электромагнитных волн
Шкала электромагнитных волн
Электромагнитные
волны классифицируются по длине
волны
или
связанной с ней частотой волны
.
Отметим также, что эти параметры
характеризуют не только волновые, но и
квантовые свойства электромагнитного
поля. Соответственно в первом случае
электромагнитная волна описывается
классическими законами, изучаемыми в
этом курсе.
Рассмотрим понятие спектра электромагнитных волн. Спектром электромагнитных волн называется полоса частот электромагнитных волн, существующих в природе.
Спектр электромагнитного излучения в порядке увеличения частоты составляют:
1) Низкочастотные волны;
2) Радиоволны;
3) Инфракрасное излучение;
4) Световое излучение;
5) Рентгеновское излучение;
6) Гамма излучение.
Различные участки электромагнитного спектра отличаются по способу излучения и приёма волн, принадлежащих тому или иному участку спектра. По этой причине, между различными участками электромагнитного спектра нет резких границ, но каждый диапазон обусловлен своими особенностями и превалированием своих законов, определяемых соотношениями линейных масштабов.
СВОЙСТВА.
Электромагнитные волны представляют собой распространение электромагнитных полей в пространстве и времени.
Рассмотрим основные свойства электромагнитных волн. 1. Электромагнитные волны излучаются колеблющимися зарядами. Наличие ускорения - главное условие излучения электромагнитных волн. 2. Такие волны могут распространяться не только в газах, жидкостях и твердых средах, но и в вакууме. 3. Электромагнитная волна является поперечной.
Периодические изменения электрического поля (вектора напряженности Е) порождают изменяющееся магнитное поле (вектор индукцииВ), которое в свою очередь порождает изменяющееся электрическое поле. Колебания векторов Е и В происходят во взаимно перпендикулярных плоскостях и перпендикулярно линии распространения волны ( вектору скорости) и в любой точке совпадают по фазе. Силовые лини электрического и магнитного полей в электромагнитной волне являются замкнутыми. Такие поля называют вихревыми. |
|
4. Скорость электромагнитных волн в вакууме с=300000 км/с. Распространение электромагнитной волны в диэлектрике представляет собой непрерывное поглощение и переизлучение электромагнитной энергии электронами и ионами вещества, совершающими вынужденные колебания в переменном электрическом поле волны. При этом в диэлектрике происходит уменьшение скорости волны. 5. При переходе из одной среды в другую частота волны не изменяется. 6. Электромагнитные волны могут поглощаться веществом. Это обусловлено резонансным поглощением энергии заряженными частицами вещества. Если собственная частота колебаний частиц диэлектрика сильно отличается от частоты электромагнитной волны, поглощение происходит слабо, и среда становится прозрачной для электромагнитной волны.
7. Попадая на границу раздела двух сред, часть волны отражается, а часть проходит в другую среду,преломляясь. Если второй средой является металл, то прошедшая во вторую среду волна быстро затухает, а большая часть энергии (особенно у низкочастотных колебаний) отражается в первую среду (металлы являются непрозрачными для электромагнитных волн).