
- •1 Электрический заряд и его свойства. Законы сохранения и квантования заряда. Взаимодействия зарядов. Закон Кулона. Характеристики неточечных зарядов.
- •2.Электрическое поле, его характеристики- напряженность, индукция и потенциал. Графическое изображение полей. Поле точечного заряда. Сложение электрических полей.
- •3.Метод вычисления напряженности. Применение принципа суперпозиции для вычисления электрических полей неточечных зарядов. Напряжённость электрического поля точечного заряда
- •4.Поток напряженности электрического поля. Теорема Остроградского-Гаусса. Примеры применения теоремы Гаусса для расчета электрических полей.
- •Циркуляция вектора напряженности
- •6.Связь между напряженностью эл. Поля и потенциалом. Градиент потенциала. Вычисление потенциала для неточечных зарядов.
- •7.Микроскопическое строение диэлектрика. Жесткий и мягкий диполь в электрическом поле.
- •8.Поляризация диэлектрика. Вектор поляризации, диэлектрическая восприимчивость. Поверхностные связанные заряды.
- •9.Электрическое поле в диэлектрике. Физический смысл относительной диэлектрической проницаемости. (Связь векторов поляризации, напряженности и индукции).
- •10.Сегнетоэлектрики, диэлектрический гистерезис, домены. Пьезоэлектрический эффект.
- •11.Проводники. Условия равновесия зарядов в проводнике. Распределение избыточных неподвижных зарядов в проводнике.
- •Равновесное распределение зарядов на проводниках.
- •12.Проводники во внешнем электрическом поле. Возникновение наведенного заряда на проводнике.
- •13.Электроемкость. Емкость шара. Заземление. Емкость конденсатора, системы конденсаторов.
- •14. Энергия системы точечных зарядов. Энергия заряженного проводника. Энергия эл. Поля. Плотность энергии эл. Поля.
- •15.Постоянный электрический ток. Основные понятия: сила тока, эдс, напряжение, разность потенциалов, сопротивление проводника и полупроводника.
- •]Эдс индукции
- •Электрический ток в полупроводниках
- •16.Закон Ома в интегральной форме для однородного и неоднородного участков и замкнутой цепи. Закон Ома в дифференциальной форме .
- •2.3 Законы Ома в интегральной форме
- •2.3.1 Закон Ома в дифференциальной форме
- •18. Классическая электронная теория электропроводности. Вывод закона Ома.
- •19.Вывод закона Джоуля-Ленца. Недостатки классической теории.
- •20. Правила Кирхгофа. Их применение в расчета сопротивления проводников. Первый закон
- •Второй закон
- •21. Магнитное поле. Вектор магнитной индукции. Напряженность магнитного поля. Закон Био-Савара-Лапласса.
- •22.Применение закона Био-Савара-Лапласса для расчета индукции магнитного поля прямого тока.
- •23.Применение закона Био-Савара-Лапласса для расчета индукции магнитного поля в центре на оси кругового тока. Магнитный момент кругового тока.
- •24. Закон Ампера. Взаимодействие прямых длинных параллельных токов.
- •Два параллельных проводника
- •25.Магнитный диполь. Поведение магнитного диполя в однородном и неоднородном магнитном поле.
- •26.Вихревой характер магнитного поля. Закон полного тока, его применение для расчета магнитного поля соленоида и тороида. Вихревой характер магнитного поля
- •27. Магнитный поток. Теорема Гаусса для магнитного поля. Работа, совершаемая при перемещение проводника и рамки с током в магнитном поле.
- •Теорема Гаусса для магнитной индукции
- •28. Сила Лоренца, ее характеристики. Формула Лоренца. Движение заряженных частиц в магнитном и электрическом поле.
- •29.Эффект Холла, его объяснение.
- •Свойства
- •30.Магнетики. (Электронные микротоки в атоме). Прецессия электронов в атоме в магнитном поле. Магнитные свойства атомов и молекул.
- •Определение
- •Магнитный момент атома
- •31.Магнитное поле в веществе, сущность намагничивания. Вектор намагничивания. Магнитная восприимчивость и относительная магнитная проницаемость вещества.
- •32. Виды магнетиков(диамагнетики, парамагнетики, ферромагнетики) Зависимость их свойств от напряженности магнитного поля.
- •33.Ферромагнетики. Явление гистерезиса. Домены(в 10 вопросе). Точка Кюри.
- •34. Явление электромагнитной индукции. Закон Фарадея. Правила Ленца. Связь явления эми и закона сохранения энергии.
- •Физическая суть правила
- •35. Причины возникновения эдс индукции в неподвижном контуре, вращающимся контуре, движущимся проводнике.
- •36.Явление самоиндукции. Эдс самоиндукции. Индуктивность. Изменение тока в цепи при включении эдс.
- •38.Применение явления эми. Токи Фуко. Скин-эффект. Явление взаимной индукции. Трансформаторы.
- •39.Энергия магнитного поля. Плотность энергии магнитного поля.
- •40.Колебательный контур без активного сопротивления. Свободные электрические колебания. Параметры колебаний.
- •Характеристики
- •41.Затухающие электрические колебания. Логарифмический декремент затухания.
- •42.Вынужденые электрические колебания. Переменный ток.
- •43.Резонанс напряжений. Резонанс токов. Мощность в цепи переменного тока.
- •44.Электромагнитное поле. Теория Максвелла. Понятие о токе смещения.
- •[Править]Точная формулировка
- •45.Интегральные уравнения Максвелла.
- •46.Электромагнитные волны. Излучение эмв. Свойства эмв. Шкала эмв.
- •Шкала электромагнитных волн
34. Явление электромагнитной индукции. Закон Фарадея. Правила Ленца. Связь явления эми и закона сохранения энергии.
Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.
Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.
ЗАКОН ФАРАДЕЯ.
Закон электромагнитной индукции Фарадея использует понятие магнитного потока ΦB через замкнутую поверхность Σ, который определён через поверхностный интеграл:
где dA —
площадь элемента движущейся поверхности
Σ(t), B —
магнитное поле, а B·dA является
вектором скалярного
произведения.
Предполагается, что поверхность имеет
«устье», очерчённое замкнутой кривой,
обозначенной ∂Σ(t).
Закон индукции Фарадея утверждает, что
когда поток изменяется, работа
(на
единицу заряда) по перемещению пробного
заряда вокруг замкнутой кривой ∂Σ(t)
выполняется силой, называемой электродвижущей
силой (ЭДС),
которая определяется по формуле:
где
—
величина электродвижущей силы (ЭДС)
в вольтах,
а ΦB — магнитный
поток в веберах.
Направление электродвижущей силы
определяется законом
Ленца.
Для плотно намотанной катушки индуктивности, содержащей N витков, каждый с одинаковым магнитным потоком ΦB, закон индукции Фарадея утверждает, что:
где N — число витков провода, ΦB — магнитный поток в веберах на один виток.
Правило Ленца определяет направление индукционного тока и гласит:
Индукционный ток всегда имеет такое направление, что он ослабляет действие причины, возбуждающей этот ток.
Физическая суть правила
Согласно закону
электромагнитной индукции Фарадея при
изменении магнитного
потока
,
пронизывающего электрический контур,
в нём возбуждается ток,
называемый индукционным.
Величина электродвижущей
силы,
ответственной за этот ток, определяется
уравнением[1]:
где знак «минус» означает, что ЭДС индукции действует так, что индукционный ток препятствует изменению потока. Этот факт и отражён в правиле Ленца.
35. Причины возникновения эдс индукции в неподвижном контуре, вращающимся контуре, движущимся проводнике.
1. Явление электромагнитной индукции, открытое Майклом Фарадеем, состоит в возникновении ЭДС индукции в замкнутом контуре при изменении магнитного потока через площадь, ограниченную этим контуром. Согласно закону электромагнитной индукции ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока, взятой со знаком «минус»:
.
Здесь
—
поток магнитной индукции через площадь
контура S, Вn —
проекция вектора магнитной индукции
на нормаль к контуру.
Знак
«минус» объясняется правилом Ленца,
определяющим направление индукционного
тока: индукционный ток в замкнутом
контуре имеет такое направление, что
созданный им магнитный поток через
площадь, ограниченную контуром, стремится
компенсировать то изменение магнитного
потока, которое порождает данный ток.
2. В неподвижном проводнике сторонней силой, создающей ЭДС индукции, является вихревое (индукционное) электрическое поле, порождаемое переменным магнитным полем. В движущемся проводнике источником ЭДС индукции является магнитная сила Лоренца, действующая на движущиеся вместе с проводником заряженные частицы.
3.
При движении проводника длиной
со
скоростью
в
однородном магнитном поле с индукций
В возникает ЭДС индукции
,
где
α — угол между векторами скорости
и
магнитной индукции
.