
- •Лопухова Татьяна Викторовна
- •Лекции по дисциплине «Изоляция и перенапряжения»
- •1.1. Применение высоких напряжений для передачи электрической энергии
- •1.2. Изоляция электрических установок
- •1.3. Перенапряжения, воздействующие на электроустановки
- •1.4. Работа изоляции в условиях длительного воздействия рабочего напряжения
- •1.5. Влияние режима нейтрали на уровни перенапряжений
- •Резистивное заземление нейтрали
- •2.1. Общая характеристика внешней изоляции
- •2.2. Регулирование электрических полей во внешней изоляции
- •2.3. Диэлектрики, используемые во внешней изоляции
- •2.4. Назначение и типы изоляторов.
- •2.5. Электрофизические процессы в газах
- •2.6. Лавина электронов и условие самостоятельности разряда.
- •2.7. Время разряда и вольт-секундные характеристики воздушных промежутков.
- •2.8. Разряд в длинных воздушных промежутках.
- •3.1. Механизм перекрытия изолятора в сухом состоянии.
- •3.2. Механизм перекрытия изолятора при загрязненной поверхности и под дождем.
- •3.3. Выбор изоляторов воздушных лэп и ру.
- •4.1. Общие свойства внутренней изоляции
- •4.2. Виды внутренней изоляции и материалы, используемые для их изготовления.
- •4.3. Зависимость электрической прочности внутренней изоляции от длительности воздействия напряжения.
- •5.1. Понятие “кратковременная электрическая прочность” внутренней изоляции и поведение изоляции при воздействии перенапряжений
- •5.2. Длительная электрическая прочность внутренней изоляции.
- •5.3. Срок службы изоляции
- •5.4. Старение изоляции под воздействием частичных разрядов
- •5.5. Тепловое старение внутренней изоляции
- •5.6. Старение изоляции при механических нагрузках
- •5.7. Увлажнение как форма старения изоляции
- •5.8. Допустимые рабочие нагрузки на внутреннюю изоляцию
- •6.1. Системы контроля качества изоляционных конструкций
- •6.2. Испытания изоляции повышенным напряжением
- •6.3. Испытания напряжением промышленной частоты
- •6.4. Измерения характеристик и испытания изоляции при повышенном напряжении
- •6.5. Профилактические испытания и диагностика изоляции оборудования высокого напряжения
- •7.1. Физика разряда молнии
- •8.1. Допустимое число отключений воздушных линий электропередачи.
- •8.2. Ожидаемое число грозовых отключений линии
- •8.3. Грозоупорность воздушных лэп
- •Удар молнии в трос.
- •2. Удар молнии в опору.
- •3. Удар мимо троса.
- •4. Индуктирование перенапряжения в линии.
- •8.4. Показатели качества грозозащиты вл
- •8.5. Основные средства молниезащиты вл
- •10.1. Импульсы грозовых перенапряжений, набегающие на подстанцию.
- •10.3. Принципы защиты электрооборудования от набегающих импульсов грозовых перенапряжений
- •10.4. Ограничители перенапряжений
- •Лекция 11. Внутренние перенапряжения в электроэнергетических системах
- •11.1. Общая характеристика внутренних перенапряжений
- •11.2. Классификация внутренних перенапряжений
- •11.3. Коммутационные перенапряжения
- •О тключение короткого замыкания (к..З.)в цикле апв
- •12.1. Перенапряжения в длинных линиях за счет емкостного эффекта
- •12.2. Феррорезонансные перенапряжения
- •Феррорезонансные перенапряжения в сетях с глухозаземленной нейтралью
- •Феррорезонансные перенапряжения в сетях с изолированной нейтралью
- •13.1. Система защиты от перенапряжений
- •13.2. Основные средства ограничения перенапряжений
- •13.3. Нелинейные ограничители перенапряжений (опн)
- •14.1 Влияние электромагнитных полей установок высокого напряжения на людей
- •14.2. Влияние коронного разряда на связь
- •14.3. Защита птиц от воздействия высокого напряжения
3.1. Механизм перекрытия изолятора в сухом состоянии.
Внесение твердого диэлектрика в воздушный промежуток может существенно изменять условия и даже механизм развития разряда. Величина разрядного напряжения, как правило, снижается и зависит не только от состояния воздуха и формы электродов, но и от свойств твердого диэлектрика, состояния его поверхности и расположения ее относительно силовых линий поля.
Особенности
развития разряда в
однородном поле
заключаются в том, что внесение твердого
диэлектрика в разрядный промежуток
снижает его электрическую прочность
за счет следующих
процессов:
а) адсорбции влаги из окружающего воздуха на
поверхности диэлектрика и усиления электричес-
к
ого
поля у электродов из-за перераспределения
зарядов в тончайшей
пленке
мкм)
; Рис.1. Твердый диэлектрик
влаги, образующейся за счет гигроскопичности в однородном поле
диэлектрика (рис.1);
б) наличия микрозазора
между диэлектриком и электродом, усиления
напряженности в этом микрозазоре из-за
разности относительных диэлектрических
проницаемостей воздуха и твердого
диэлектрика
В неоднородном электрическом поле электрическая прочность промежутка уменьшается, в основном, за счет неоднородности поля. Гигроскопические свойства диэлектрика и наличие микрозазоров значительно меньше влияют на разрядные напряжения, чем в однородном поле.
Для изоляционных
конструкций по типу опорных изоляторов
тангенциальная составляющая напряженности
электрического поля больше, чем нормальная
составляющая
>
(рис.2). Силовые линии поля имеют наибольшую
концентрацию у электродов. Возможно
возникновение коронного разряда у
электродов, воздействие которого опасно
особенно для полимерной изоляции
(наличие озона и окислов азота). Могут
образоваться
под
воздействием стримеров обугленные
следы с повышенной
проводимостью
Е
Это справедливо
и для случая
В этом случае
каналы стримеров, развивающихся
Е
вдоль поверхности диэлектрика, имеют
значительно большую емкость по отношению Рис.2. Модель опорного изолятора
к внутреннему электроду, через них проходит сравнительно большой ток.
При определенном значении напряжения ток возрастает настолько, что температура стримерных каналов становится достаточной для термической ионизации. Термически ионизированный
к
анал
стримерного разряда превращается
l
в канал скользящего разряда (рис.3).
Проводимость
канала скользящего
E
разряда значительно
больше проводимости
E
канала стримера. Поэтому падение напряже- Рис.3. Модель проходного
ния в канале скользящего разряда меньше, а изолятора
на неперекрытой части промежутка больше, чем в каналах стримера. Это приводит к удлинению канала скользящего разряда и полному перекрытию промежутка при меньшем значении напряжения между электродами ( по сравнению со случаем > ). Ток определяется емкостью канала разряда по отношению к противоположному электроду. Чем больше емкость, тем ниже разрядное напряжение при неизменном расстоянии между электродами по поверхности диэлектрика.
Влияние параметров отражено в эмпирической формуле Тёплера, согласно которой длина канала скользящего разряда
(4.1)
где - коэффициент, определяемый опытным путем, С - удельная поверхностная емкость (емкость единицы поверхности диэлектрика, по которой развивается разряд, относительно противоположного электрода), Ф/см.
Напряжение скользящего разряда и разрядное напряжение вычисляются по эмпирическим формулам:
(4.2)
(4.3)
Из последней формулы видно что рост длины изолятора дает относительно малое повышение разрядного напряжения.
Для увеличения разрядного напряжения можно уменьшить удельную поверхностную емкость С за счет увеличения толщины диэлектрика (создание ребристой поверхности).