
- •Лопухова Татьяна Викторовна
- •Лекции по дисциплине «Изоляция и перенапряжения»
- •1.1. Применение высоких напряжений для передачи электрической энергии
- •1.2. Изоляция электрических установок
- •1.3. Перенапряжения, воздействующие на электроустановки
- •1.4. Работа изоляции в условиях длительного воздействия рабочего напряжения
- •1.5. Влияние режима нейтрали на уровни перенапряжений
- •Резистивное заземление нейтрали
- •2.1. Общая характеристика внешней изоляции
- •2.2. Регулирование электрических полей во внешней изоляции
- •2.3. Диэлектрики, используемые во внешней изоляции
- •2.4. Назначение и типы изоляторов.
- •2.5. Электрофизические процессы в газах
- •2.6. Лавина электронов и условие самостоятельности разряда.
- •2.7. Время разряда и вольт-секундные характеристики воздушных промежутков.
- •2.8. Разряд в длинных воздушных промежутках.
- •3.1. Механизм перекрытия изолятора в сухом состоянии.
- •3.2. Механизм перекрытия изолятора при загрязненной поверхности и под дождем.
- •3.3. Выбор изоляторов воздушных лэп и ру.
- •4.1. Общие свойства внутренней изоляции
- •4.2. Виды внутренней изоляции и материалы, используемые для их изготовления.
- •4.3. Зависимость электрической прочности внутренней изоляции от длительности воздействия напряжения.
- •5.1. Понятие “кратковременная электрическая прочность” внутренней изоляции и поведение изоляции при воздействии перенапряжений
- •5.2. Длительная электрическая прочность внутренней изоляции.
- •5.3. Срок службы изоляции
- •5.4. Старение изоляции под воздействием частичных разрядов
- •5.5. Тепловое старение внутренней изоляции
- •5.6. Старение изоляции при механических нагрузках
- •5.7. Увлажнение как форма старения изоляции
- •5.8. Допустимые рабочие нагрузки на внутреннюю изоляцию
- •6.1. Системы контроля качества изоляционных конструкций
- •6.2. Испытания изоляции повышенным напряжением
- •6.3. Испытания напряжением промышленной частоты
- •6.4. Измерения характеристик и испытания изоляции при повышенном напряжении
- •6.5. Профилактические испытания и диагностика изоляции оборудования высокого напряжения
- •7.1. Физика разряда молнии
- •8.1. Допустимое число отключений воздушных линий электропередачи.
- •8.2. Ожидаемое число грозовых отключений линии
- •8.3. Грозоупорность воздушных лэп
- •Удар молнии в трос.
- •2. Удар молнии в опору.
- •3. Удар мимо троса.
- •4. Индуктирование перенапряжения в линии.
- •8.4. Показатели качества грозозащиты вл
- •8.5. Основные средства молниезащиты вл
- •10.1. Импульсы грозовых перенапряжений, набегающие на подстанцию.
- •10.3. Принципы защиты электрооборудования от набегающих импульсов грозовых перенапряжений
- •10.4. Ограничители перенапряжений
- •Лекция 11. Внутренние перенапряжения в электроэнергетических системах
- •11.1. Общая характеристика внутренних перенапряжений
- •11.2. Классификация внутренних перенапряжений
- •11.3. Коммутационные перенапряжения
- •О тключение короткого замыкания (к..З.)в цикле апв
- •12.1. Перенапряжения в длинных линиях за счет емкостного эффекта
- •12.2. Феррорезонансные перенапряжения
- •Феррорезонансные перенапряжения в сетях с глухозаземленной нейтралью
- •Феррорезонансные перенапряжения в сетях с изолированной нейтралью
- •13.1. Система защиты от перенапряжений
- •13.2. Основные средства ограничения перенапряжений
- •13.3. Нелинейные ограничители перенапряжений (опн)
- •14.1 Влияние электромагнитных полей установок высокого напряжения на людей
- •14.2. Влияние коронного разряда на связь
- •14.3. Защита птиц от воздействия высокого напряжения
12.2. Феррорезонансные перенапряжения
Они возникают, если выполняются условия: 1) наличие нелинейной индуктивности L; 2) несимметричный режим; 3) r0.
К
онтур,
в котором возникают феррорезонансные
перенапряжения можно представить в
виде:
Феррорезонансные перенапряжения в сетях с глухозаземленной нейтралью
При КЗ феррорезонанса не возникает, т.к. появляются большие активные потери.
Представим, что произошел обрыв провода без падения на землю (допустим вблизи подстанции).
У
неповрежденных фаз стекание тока на
землю есть, но он очень маленький.
Uэ=0,5Uф
Можно попасть в тот и другой режим, т.е. происходит самопроизвольное смещение нейтрали, т.е. происходит феррорезонансный скачок. Такие резкие скачки опасны для межвитковой изоляции.
Очень часто причиной феррорезонансных перенапряжений становятся ненагруженные трансформаторы напряжения (ТН).
Феррорезонансные перенапряжения в сетях с изолированной нейтралью
Uэ=1,5Uф – наиболее распространенный случай в сетях с изолированной нейтралью, так что разрядники и ОПН в этом случае не помогут. Поэтому либо вообще не допускать такого случая (программные мероприятия), либо добавить активное сопротивление. Реле нужно в тех случаях, когда нельзя работать без разомкнутого трансформатора.
В настоящее время добавляют в нейтраль резистор, и характеристика принимает вид:
ЛЕКЦИЯ 13. СПОСОБЫ ОГРАНИЧЕНИЯ ПЕРЕНАПРЯЖЕНИЙ
13.1. Система защиты от перенапряжений
Ограничение перенапряжений;
Исключение возможности перенапряжений:
А) Схемные мероприятия (в том числе сопротивление в нейтрали);
Б) Оперативные мероприятия.
Возможно исключить коммутационные мероприятия при плановых коммутациях и АПВ.
а и б – ограничения резонансных мероприятий.
13.2. Основные средства ограничения перенапряжений
А. Защитные аппараты (ПЗ, РТ, РВ, ОПН)
Принцип действия – отвести в землю энергию перенапряжений.
Б. Применение резисторов.
Благодаря способам А мы можем ограничить грозовые, аварийные коммутационные перенапряжения (в том числе дуговые), а способы Б ограничивают резонансные перенапряжения.
В. Выключатели 2-х ступенчатого действия.
Существует способ защиты от перенапряжения управление моментом коммутации выключателя (при этом свободные колебания могут быть исключены), отслеживание угла сдвига между I и U, скорости дионизации среды. Для этого должна быть очень точная механика, как самого выключателя, так и его привода.
Мероприятия 2 ограничены регламентом, схема должна оставаться функциональной.
Применение резисторов тоже не всегда возможно. Для глубокого ограничения перенапряжений (грозовых и коммутационных) используют коммутационные аппараты (ОПН).
кз;
откл. Q2;
откл. Q1;
tапп;
Q1 на ВЛ, при этом на ЛЭП остается остаточный заряд U0, поэтому снижение этой величины это выключатель 2-хступенчотого действия.
ДК – дополнительный
контакт.
ШР – ступенчатый резистор.