
- •Характеристика тепловых процессов в электрических цепях. [1]
- •Характеристика тепловых процессов в магнитных цепях. [2]
- •Магнитные цепи
- •П остоянные магниты, их характеристики. [7]
- •Постоянные магниты, характеристики и параметры
- •Основные формулы расчёта электродинамической силы в электрических аппаратах. [8]
- •Основные формулы расчёта электродинамической силы между параллельными проводниками. [9]
- •Основные формулы расчёта электродинамической силы между взаимоперпендикулярными проводниками. [10]
- •Процессы коммутации в электрических аппаратах. [11]
- •Классификация аппаратов управления, защиты и автоматики. [12]
- •Устройство и принцип работы резисторов, контроллеров. [13]
- •Устройство и принцип работы выключателей, контакторов. [14] (низковольтных)
- •Устройство и принцип работы коммандоаппаратов, магнитных пускателей. [15]
- •3.Путевые (позиционные) выключатели и микро-выключатели.
- •Применение электрических аппаратов низкого напряжения. [16]
- •Классификация и применение в схемах управления, защиты и автоматики реле. [17]
- •Основные формулы расчёта параметров аппаратов защиты. [18] (выбор предохранителей и автоматов)
- •Устройство и принцип работы предохранителей. [19] (Низковольтные)
- •Устройство и принцип работы рубильников и переключателей. [20]
- •Устройство и принцип работы автоматических воздушных выключателей. [21]
- •Устройства, их назначение и виды расцепителей автоматов. [22]
- •Комплектные устройства, их назначение и виды. [23]
- •Принцип действия, основные элементы, параметры высоковольтных выключателей. [24]
- •Классификация высоковольтных выключателей. [25]
- •Приводы высоковольтных выключателей. [26]
- •Устройство и принцип работы разъединителей и выключателей нагрузки. [27]
- •Устройство и принцип работы отделителей, короткозамыкателей. [28]
- •Устройство и принцип работы токоограничивающих реакторов. [29]
- •Устройство и принцип работы разрядников, предохранителей. [30]
- •Принцип действия, основные элементы, параметры трансформаторов тока и напряжения. [31]
- •Классификация, назначение и область применения бесконтактных электрических аппаратов. [32]
- •Устройство, принцип действия, физические явления бесконтактных аппаратов. [33]
Магнитные цепи
Всякий электромагнит состоит из стального сердечника – магнитопровода и намотанной на него катушки с витками изолированной проволоки, по которой проходит электрический ток.
Совокупность нескольких участков: ферромагнитных (сталь) и неферромагнитных (воздух), по которым замыкаются линии магнитного потока, составляют магнитную цепь.
Чем больше величина магнитной проницаемости материала, тем легче проходить магнитному потоку по участку магнитной цепи, выполненному из данного материала. Максимальная проницаемость в лучших случаях имеет порядок 105 ÷ 106, тогда как проницаемость неферромагнитных материалов, в том числе и воздуха, практически равна единице. Таким образом, соотношение между проницаемостью участков магнитопровода и окружающей среды не превышает 105 ÷ 106. В электрических цепях соотношение между проводимостью участков цепи и окружающей среды составляет 1010 ÷ 1020. Поэтому включение воздушного зазора в цепь не приводит к ее разрыву, т.е. магнитный поток не уменьшается до нуля.
В силу этого, магнитный поток, ответвляющийся через окружающую среду, может составить значительную долю магнитного потока, замыкающегося по магнитной цепи. Данный поток называется потоком рассеяния. Расчет магнитных цепей с учетом потоков рассеяния представляет собой сложную задачу. В некоторых случаях оказывается необходимым рассчитывать магнитную цепь с распределенными параметрами, и часто приходится находить картину магнитного поля. Расчеты таких цепей рассматриваются в разделе «Теория электромагнитного поля», а также в специальных курсах. Далее будем пренебрегать потоками рассеяния и будем считать, что через любое поперечное сечение неразветвленной части магнитной цепи проходит один и тот же поток, а так же все витки данной обмотки пронизываются одним и тем же потоком.
М
агнитные
цепи часто содержат воздушные зазоры.
Эти зазоры могут быть неизбежны по
конструктивным причинам (магнитопроводы
трансформаторов) или быть принципиально
необходимыми (зазоры между статором и
ротором электрических машин). Форма
магнитного поля в воздушном зазоре
обычно неоднородна и трудно поддается
расчету. Только в случае, когда длина
магнитных зазоров мала по сравнению с
поперечными размерами, поле в воздушном
зазоре можно считать однородным. В таком
поле F = B×s.
Н
аправление
магнитных линий и направление создающего
их тока связаны между собой известным
правилом правоходового винта (буравчика)
(рис. 4.1).
Рис. 4.1. Магнитное поле прямолинейного проводника и катушки. Правило Буравчика
Магнитопроводы магнитных систем переменного тока выполняют в основном из кремнистых электротехнических сталей, которые обладают малыми потерями на перемагничивание (мала коэрцитивная сила) и на вихревые токи (повышенное удельное электрическое сопротивление). В целях уменьшения потерь на вихревые токи магнитопроводы изготовляют шихтованными в виде набора электрически изолированных друг от друга пластин толщиной от ОД до 1,0 мм. Для снижения потерь в магнитной системе переменного тока используют также и другие материалы, например магнитомягкие ферриты, аморфные сплавы.