
- •Введение
- •1. Общие сведения и классификация строительных материалов и изделий
- •2. Связь состава, строения и свойств строительных материалов
- •3. Основные свойства строительных материалов
- •3.1. Физические свойства
- •3.2. Механические свойства
- •3.3. Химические свойства
- •3.4. Технологические свойства
- •3.5. Долговечность и надежность
- •4. Природные каменные материалы
- •4.1. Общие сведения
- •4.2. Классификация по основным свойствам
- •4.3. Основные виды природных каменных материалов
- •4.4. Защита природных каменных материалов от разрушения
- •5. Древесные материалы и изделия
- •5.1. Строение и состав древесины
- •5.2. Древесные породы, применяемые в строительстве
- •5.3. Основные свойства древесины
- •5.4. Лесоматериалы и изделия из древесины
- •5.5. Защита древесины от гниения и возгорания
- •5.6. Хранение древесины
- •6. Строительная керамика
- •6.1. Классификация керамических материалов
- •6.2. Производство керамических изделий
- •6.3. Структура и общие свойства керамических изделий
- •6.4. Основные виды керамических изделий
- •7. Стекло и другие материалы на основе минеральных расплавов
- •7.1. Стекло и его свойства
- •7.2. Производство стекла
- •7.3. Структура и свойства стекла и стеклоизделий
- •7.4. Стеклянные материалы
- •7.5. Ситаллы, шлакоситаллы и ситаллопласты
- •7.6. Изделия из каменных расплавов
- •8. Металлические материалы
- •8.1. Общие сведения
- •8.2. Строение и свойства металлов и сплавов
- •8.3. Основы получения чугуна и стали
- •8.4. Получение готовых металлических изделий
- •8.5. Свойства сталей
- •8.6. Модифицирование структуры и состава стали
- •8.7. Углеродистая сталь
- •8.8. Легированная сталь
- •8.9. Основные требования к конструкционным строительным сталям
- •8.10. Цветные металлы и сплавы
- •8.11. Соединение металлических конструкций
- •8.12. Сварка металлов
- •8.13. Коррозия металлов и способы защиты
- •9. Неорганические вяжущие вещества
- •9.1. Общие сведения
- •9.2. Воздушная известь
- •9.3. Гипсовые вяжущие вещества
- •9.4. Магнезиальные вяжущие вещества
- •9.5. Жидкое стекло и кислотоупорный цемент
- •9.6. Гидравлическая известь
- •9.7. Романцемент
- •9.8. Портландцемент
- •Минеральный состав клинкера Основные минералы клинкера: алит, белит, трехкальциевый алюминат и целит (см. Табл. 9.1).
- •9.9. Долговечность цементного камня. Основные виды коррозии
- •9.10. Специальные виды цемента
- •9.11. Глиноземистый цемент
- •9.12. Расширяющиеся и безусадочные цементы
- •9.13. Вяжущие автоклавного твердения
- •10. Органические вяжущие вещества
- •10.1. Общие сведения
- •10.2. Основные свойства битума
- •10.3. Асфальтовый бетон
- •11. Бетоны
- •11.1. Общие сведения
- •11.2. Классификация бетонов
- •11.3. Основные требования к бетонам
- •11.4. Выбор цемента для бетона
- •11.5. Вода для приготовления бетонной смеси
- •11.6. Заполнители для бетона
- •11.7. Добавки к бетонам
- •11.8. Бетонная смесь и ее характеристики
- •11.9. Свойства тяжелого бетона
- •11.10. Подбор состава тяжелого бетона
- •11.11. Приготовление и транспортирование бетонной смеси
- •11.12. Уплотнение бетонной смеси
- •11.13. Уход за твердеющим бетоном
- •11.14. Особые виды бетона
- •11.15. Гидротехнический бетон
- •12. Железобетон
- •12.1. Общие сведения
- •12.2. Арматура
- •12.3. Монолитный железобетон
- •12.4. Сборный железобетон
- •12.5. Основные виды сборных железобетонных изделий
- •13. Строительные растворы
- •13.1. Общие сведения
- •13.2. Свойства строительных растворов
- •13.3. Виды строительных растворов
- •14. Полимерные материалы
- •14.1. Общие сведения
- •14.2. Основные свойства пластмасс
- •14.3. Виды полимерных материалов
- •15. Геосинтетические материалы
- •16. Композиционные материалы
- •17. Теплоизоляционные материалы
- •18. Гидроизоляционные материалы
- •19. Лакокрасочные материалы
- •Список литературы
- •Оглавление
2. Связь состава, строения и свойств строительных материалов
Каждый материал, применяемый в строительстве, имеет различные свойства, определяющие область его рационального применения и возможность сочетания с другими материалами. Основные свойства строительных материалов (физические, механические, химические и технологические) определяются их составом и строением.
Состав материала. Строительные материалы характеризуются химическим, минеральным и фазовым составом.
Химический состав строительных материалов позволяет судить о ряде свойств материала: огнестойкости, биостойкости, механических и других технических характеристиках.
В зависимости от химического состава принято выделять органические и неорганические вещества.
Органические вещества представляют собой соединения углерода с другими элементами (преимущественно водородом, кислородом и азотом). Среди строительных материалов из органических веществ чаще всего применяется древесина и битум. В XX в. появились и быстро завоевали прочные позиции полимерные материалы, синтезируемые из продуктов переработки нефти, угля и т. п.
Как правило, стойкость и долговечность органических материалов невелика. Многие из них могут окисляться кислородом воздуха, гореть, гнить и т. д. Однако ряд положительных свойств (невысокая плотность, относительно высокая прочность, легкость обработки, декоративность, водонепроницаемость и др.) способствуют широкому использованию органических материалов в строительстве.
Неорганические вещества, применяемые в строительстве (керамика, природный камень и др.), представляют собой соединения уже окисленных химических элементов в основном оксидов кремния и алюминия с оксидами металлов. Например, песок оксид кремния (SiO2), глина водный алюмосиликат (А12О3nSiO2mH2О). Будучи уже в окисленном состоянии, они не способны окисляться и тем более гореть. Такие материалы практически не разрушаются живыми организмами (не гниют). Однако их переработка в изделия, как правило, более трудоемка и энергоемка, чем переработка органических материалов.
Химический состав неорганических веществ (цемента, извести и др.) и каменных материалов удобно выражать количеством содержащихся в них оксидов (%). Основные и кислотные оксиды химически связаны между собой и образуют минералы, которые и определяют многие свойства материала.
Минеральный состав показывает, какие минералы и в каком количестве содержатся в вяжущем веществе или в каменном материале. Например, в портландцементе содержание трехкальциевого силиката (3CaOSiO2) составляет 45-60%, причем с увеличением его количества ускоряется твердение, повышается прочность цементного камня.
Фазовый состав материала и фазовые переходы воды, находящиеся в его порах, оказывают влияние на все свойства и поведение материала при эксплуатации. В материале выделяют твердые вещества, образующие стенки пор, т.е. "каркас" материала, и поры, заполненные воздухом и водой. Если вода, являющаяся компонентом этой системы, замерзает, то образовавшийся в порах лед изменяет механические и тепломеханические свойства материала. Увеличение же объема замерзающей в порах воды вызывает внутренние напряжения, способные разрушить материал при повторных циклах замораживания и оттаивания.
Строение материала изучают на трех уровнях: 1) макроструктура материала строение, видимое невооруженным глазом; 2) микроструктура материала строение видимое в оптический микроскоп; 3) внутреннее строение веществ, составляющих материал, на молекулярно-ионном уровне, изучаемом методами рентгено-структурного анализа, электронной микроскопии и т.п.
Макроструктура твердых строительных материалов может быть следующих типов: конгломератная (бетоны и др.), ячеистая (газо- и пенобетоны, ячеистые пластмассы и др.), мелкопористая (поризованная керамика и др.), волокнистая (древесина, стеклопластик, минеральная вата и др.), слоистая (текстолит и др.), рыхлозернистая (песок, щебень и др.).
Поры один из важнейших элементов структуры большинства строительных материалов представляют собой воздушные ячейки в материале размером от долей микрона до сантиметра. Количество, размер и характер пор (замкнутые или сообщающиеся) во многом определяют свойства материала. Например, пористое стекло (пеностекло) в отличие от обычного непрозрачное, легкое и может распиливаться обычной пилой.
Крупные поры размером более 1 см и полости между частицами зернистых материалов (песка, гравия и др.) называют пустотами.
По степени связности частиц материалы могут быть рыхлые, состоящие из отдельных зерен или волокон (песок, гравий, минеральная вата, распушенный асбест), и слитного строения, примером которых может служить бетон, керамика, асбестоцемент. Среди материалов слитного строения выделяют конгломераты и композиты.
Конгломераты материалы, представляющие собой плотно соединенные (обычно с помощью какого-нибудь цементирующего вещества) отдельные зерна. Типичным конгломератом является бетон и строительный раствор. В этих материалах зерна песка и крупного заполнителя прочно соединены в единое целое при помощи вяжущего, например, цемента.
Композиты материалы с организованной структурой. В композитах различают компонент, образующий непрерывную фазу, называемую матрицей и играющую роль связующего, и второй компонент, дискретно распределенный в матрице, - упрочняющий компонент. В роли матрицы в строительных композитах используют полимерные и минеральные вяжущие; в роли упрочняющего компонента волокнистые (стекловолокно, отрезки металлической проволоки, асбестовое волокно и т. п.) или листовые (бумага, древесный шпон, ткани) материалы.
Матрица, с одной стороны, является формообразующей частью композиционного материала, а с другой стороны, матрица связующее, которое «заставляет» дискретный компонент работать как единое целое, обеспечивая высокую прочность материала. В композиционных материалах достигается совокупность свойств, не являющаяся простой суммой свойств исходных составляющих. Примером искусственных композитов может служить стеклопластик, железобетон, асбестоцемент. Природным композиционным материалом можно считать, например, древесину и костную ткань животных.
Волокнистые и слоистые материалы, у которых волокна (слои) расположены параллельно одно другому, обладают различными свойствами в разных направлениях. Это явление называется анизотропией, а материалы, обладающие такими свойствами, анизотропными. Пример анизотропного материала волокнистого строения древесина. Древесина набухает и дает усадку поперек волокон в 10...15 раз больше, чем вдоль, а прочность и теплопроводность древесины в разных направлениях различна.
Микроструктура веществ, составляющих материал, в зависимости от степени упорядоченности расположения атомов (или молекул), может быть кристаллическая и аморфная (стеклообразная).
Кристаллическими называют тела, в которых атомы (или молекулы) расположены в правильном геометрическом порядке, причем этот общий порядок соблюдается как для атомов, расположенных в непосредственной близости друг от друга, так и на значительном расстоянии (дальний порядок).
Аморфными называют тела, в которых только ближайшие друг к другу атомы находятся в упорядоченном расположении; дальний же порядок отсутствует.
Кристаллические и аморфные формы нередко являются лишь различными состояниями одного и того же вещества. Примером служит кристаллический кварц и различные аморфные формы кремнезема. Кристаллическая форма всегда более устойчива. Аморфная форма вещества может перейти в более устойчивую кристаллическую форму.
Процесс кристаллизации можно представить следующим образом. При переходе вещества из жидкого состояния в твердое (например, при застывании расплава металла) или при выпадении твердого вещества в осадок из насыщенного раствора (например, при твердении гипса) атомы и молекулы вещества стремятся занять такое положение относительно друг друга, чтобы силы их взаимодействия оказались максимально уравновешены. Поэтому их положение относительно друг друга оказывается вполне определенным, фиксированным.
Такой геометрически правильный и повторяющийся в пространстве порядок расположения атомов (молекул) называют кристаллической решеткой.
Процесс кристаллизации требует определенного времени. В некоторых случаях (например, при быстром охлаждении расплавленного кварца) затвердевание происходит без кристаллизации с сохранением хаотического расположения атомов. Так образуется аморфное вещество, например, кварцевое стекло.
Различие в строении кристаллических и аморфных веществ определяет и различие в их свойствах. Так, аморфные вещества, обладая нерастраченной внутренней энергией кристаллизации, химически более активны, чем кристаллические такого же состава. Например, расплав доменного шлака, используемый для получения шлаковых цементов, охлаждают по специальному ускоренному режиму для получения гранулированного шлака стеклообразного строения, обладающего повышенной химической активностью. Аморфное строение имеют также горные породы, применяемые в качестве активных минеральных добавок к цементам (туфы, пемзы, диатомиты, трепелы).
Другое существенное различие между аморфными и кристаллическими веществами состоит в том, что кристаллические вещества при нагревании до определенной температуры (температуры плавления) плавятся, а аморфные размягчаются и постепенно переходят в жидкое состояние (у них отсутствует температура плавления).
Прочность аморфных веществ, как правило, ниже прочности кристаллических, поэтому для получения материалов повышенной прочности специально проводят кристаллизацию стекол, например, при получении ситаллов и шлакоситаллов - новых стеклокристаллических материалов.
Различные свойства наблюдаются у кристаллических материалов одного и того же состава, если они кристаллизуются в разных кристаллических формах. Это явление называют полиморфизмом. Например, существуют две кристаллические формы углерода: алмаз и графит. Резкое отличие в их свойствах связано с различным строением кристаллов: атомы алмаза имеют плотную тетраэдрическую решетку, а атомы графита расположены как бы слоями, причем расстояние между слоями больше, чем между соседними атомами в слоях. Такое строение графита придает ему мягкость и способность расслаиваться на тончайшие пластинки.
Изменением свойств материала путем изменения его кристаллической структуры пользуются при термической обработке металлов (закалке или отпуске).
Внутреннее строение веществ, составляющих материал, определяет механическую прочность, твердость, тугоплавкость и другие важные свойства материала.
Кристаллические вещества, входящие в состав строительного материала, различают по характеру связи между частицами, образующими пространственную кристаллическую решетку. Она может быть образована: нейтральными атомами, ионами и целыми молекулами.
Ковалентная связь осуществляется обычно электронной парой, образуется в кристаллах простых веществ (алмаз, графит) и в кристаллах некоторых соединений из двух элементов (кварц, карборунд, другие карбиды, нитриды). Такие материалы выделяются очень высокой механической прочностью и твердостью, они весьма тугоплавки.
Ионные связи образуются в кристаллах тех материалов, в которых связь имеет преобладающе ионный характер и обусловлена электростатическими взаимодействиями между ионами. Такие материалы могут иметь невысокую прочность и твердость, малую водостойкость (например, гипс и ангидрид).
В сложных кристаллах, часто встречающихся в строительных материалах (кальцит, полевые шпаты), осуществляются и ковалентная и ионная связи. Свойства подобных материалов разнообразны.
Молекулярные кристаллические решетки и соответствующие им молекулярные связи образуются преимущественно в кристаллах тех веществ, в молекулах которых связи являются ковалентными. Кристалл этих веществ построен из целых молекул, которые удерживаются друг около друга сравнительно слабыми ван-дер-ваальсовыми силами межмолекулярного притяжения (как в кристаллах льда). Такие материалы имеют малую механическую прочность и твердость, низкую температуру плавления.