
- •1. Предмет, методы и объекты изучения дисциплины «Технология материалов».
- •Механические и технологич св-ва км.
- •4. Кристаллические решетки металлов и их основные типы.
- •5. Дефекты кристаллических решеток. Их влияние на свойства металлов.
- •6. Кристаллизация металлов. Полиморфизм металлов.
- •7. Понятия металлических сплавов. Сплавом называют результат сплавления двух или более компонентов. Компоненты - это химически индивидуальные вещества образовывающие сплав.
- •8. Цветные металлы и сплавы на и их основе. Маркировка.
- •9.Сплавы на основе титана. Их свойства и маркировка.
- •10. Сплавы на основе алюминия. Их свойства и маркировка.
- •11. Сплавы на основе меди. Их свойства и маркировка.
- •12. Правило отрезков для диаграмм состояния.
- •4. Цементит – характеристика дана выше (в компонентах железоуглеродистых сплавов).
- •1 4. Диаграмма состояния железо-цементит. Эвтектические и эвтектоидные превращения
- •15. Диаграмма состояния железо-цементит. Кривые охлаждения сплавах железа с углеродом.
- •16. Термическая обработка сталей. Виды термической обработки.
- •17. Отжиг и нормализация сталей.
- •18. Закалка сталей.
- •19.Отпуск закаленных сталей.
- •20. Химико-термическая обработка сталей.
- •21. Композиционные материалы. Классификация км.
- •22. Композиционные материалы. Способы получения км.
- •23. Порошковая металлургия. Формование и спекание порошков.
- •1. Получение порошков
- •24. Свойства и области применения порошковых материалов.
- •2.1 Химические свойства
- •2.2 Физические свойства
- •25. Неметаллические материалы. Полимеры.
- •26. Пластмассы. Состав и классификация.
- •28. Чугуны. Их структура и свойства.
- •29. Классификация чугунов. Маркировка. Области применения
- •30. Подготовка сырьевых материалов (производство чугуна).
- •31. Основные химические процессы производства чугуна.
- •32. Доменное производство чугуна.
- •33. Внедоменное производство железа.
- •34. Влияние химического состава на свойства чугунов.
- •35. Конвертерный способ производства стали.
- •36. Производство стали в мартеновской печи
- •38. Разливка стали.
- •40. Строение стального слитка.
- •Маркировка легированных сталей
- •45. Инструментальные стали. Конструкционные стали. Области применения.
- •46. Производство меди.
- •47. Производство алюминия.
- •48. Производство титана.
- •49. Характеристика литейного производства. Преимущества и недостатки.
- •50. Классификация литых заготовок.
- •52. Формовочные и стержневые смеси.
- •53. Изготовление литейных форм.
- •54. Приемы ручной формовки.
- •55. Литейное производство. Изготовление стержней.
- •58. Литье по выплавляемым моделям. Литье в металлические формы.
- •59. Центробежное литье. Литье под давлением.
- •60. Литейное производство. Дефекты отливок и способы их устранения.
- •61. Обработка металлов давлением. Классификация процессов.
- •63. Обработка металлов давлением. Прессование.
- •64. Обработка металлов давлением. Волочение.
- •65. Обработка металлов давлением. Ковка.
- •66. Обработка металлов давлением. Штамповка.
- •67. Обработка металлов давлением. Горячая объемная штамповка (гош).
- •68. Обработка металлов давлением. Холодная штамповка.
- •69. Обработка металлов давлением. Листовая штамповка.
- •70. Сварочное производство. Виды сварки.
- •71. Сварочное производство. Ручная электродуговая сварка.
- •72. Сварочное производство. Автоматическая дуговая сварка под флюсом.
- •73. Контактная сварка. Газовая сварка.
- •74. Особые способы сварки: диффузионная, сварка трением, сварка взрывом.
- •75. Виды сварных соединений и швов. Термические процессы в сварочном производстве (наплавка, пайка).
- •76. Обработка металлов резанием. Классификация движений в металлорежущих станках.
- •77. Классификация металлорежущих станков.
- •78. Механическая обработка. Точение.
- •79. Механическая обработка. Сверление.
- •80. Механическая обработка. Протягивание.
- •81. Механическая обработка. Фрезерование.
- •82. Механическая обработка. Шлифование.
- •83. Финишная обработка поверхностей деталей.
34. Влияние химического состава на свойства чугунов.
Повышенное содержание углерода приводит к уменьшению прочности, твердости и увеличению пластичности; углерод улучшает литейные свойства чугуна
Увеличенное содержание углерода улучшает литейные свойства чугуна
Углерод - основной регулятор механических свойств ковкого чугуна; чугун обладает низкой жидкотекучестью и требует высокого перегреваКремний (с учетом содержания углерода) способствует выделению графита и снижает твердость, а также уменьшает усадку; повышенное содержание кремния снижает пластичность и несколько увеличивает твердость
С повышением содержания кремния возрастает предел прочности при растяжении, при дальнейшем увеличении содержания - уменьшаются предел прочности при растяжении и относительное удлинение Для ферритного ковкового чугуна суммарное содержание кремния и углерода должно быть 3,7-4,1%. Содержание кремния зависит от количества углерода и толщины стенки. При содержании кремния до 1,5% механические свойства сплава повышаютсяМарганец тормозит выделение графита, способствует размельчению перлита и отбеливанию чугуна; взаимодействуя с серой, нейтрализует ее вредное действие. Механические свойства чугуна повышаются при содержании марганца до 0,7-1,3 %, а при дальнейшем увеличении - снижаются. Марганец увеличивает усадку сплава
С повышением содержания марганца уменьшается доля феррита и увеличивается количество перлита; при этом повышается предел прочности при растяжении и уменьшается относительное удлинение. Для повышения износостойкости содержание марганца увеличивают до 1,0- 1,3%
Марганец увеличивает количество связанного углерода, повышает прочность феррита. При повышении содержания марганца до 0,8-1,4% увеличивается количество перлита, прочность сплава повышается, но резко падает пластичность и ударная вязкость. В ферритном чугуне содержание марганца не должно превышать 0,6%, в перлитном - 1,0%
Магний
Для образования графита шаровидной формы содержание магния должно быть не ниже 0,03%, а церия не ниже 0,02% (остаточное содержание). При более низком содержании не весь графит получает шаровидную форму; часть его содержится в виде пластинок, что снижает механические свойства сплава. При повышенном содержании магния (и церия) в структуре сплава образуется цементит и, следовательно, снижаются механические свойства. Оптимальное содержание остаточного магния - 0,04-0,08%
Хром - карбидообразующий элемент. С увеличением хрома растет прочность и твердость отливок, замедляется процесс графитизации углерода
С увеличением содержания хрома в определенных пределах повышается жаростойкость, коррозионная стойкость и износостойкость сплава
Хром замедляет процесс графитизации углерода. Содержание хрома в сплаве не превышает 0,06-0,08%; повышение содержания до 0,1 -0,12% приводит к образованию в структуре сплава стойких карбидов
35. Конвертерный способ производства стали.
Конвертерное производство — получение стали в сталеплавильных агрегатах-конвертерах путём продувки жидкого чугуна воздухом или кислородом. Превращение чугуна в сталь происходит благодаря окислению кислородом содержащихся в чугуне примесей (кремния, марганца, углерода и др.) и последующему удалению их из расплава.
Бессемеровский процесс
Устройство и работа бессемеровского конвертера
Первый массовый способ получения жидкой стали открыл английский изобретатель Генри Бессемер в 1856. Основной недостаток процесса — невысокое качество металла за счёт неудалённых при продувке вредных примесей (фосфора и серы). Для выплавки бессемеровских чугунов нужны очень чистые по содержанию серы и фосфора железные руды, природные запасы которых ограничены.
Томасовский процесс
Англичанин Сидни Джилкрист Томас в 1878 вместо кислой динасовой футеровки бессемеровского конвертера применил основную футеровку, а для связывания фосфора предложил использовать известь. Томасовский процесс позволил перерабатывать высокофосфористые чугуны и получил распространение в странах, где железные руды большинства месторождений содержат много фосфора (Бельгия, Люксембург, др.). Однако и томасовская сталь была низкого качества.
Кислородно-конвертерный процесс
В 1936 советский инженер Н. И. Мозговой впервые использовал для продувки чугуна в конвертере кислород, что коренным образом изменило технологию конвертерного производства. Металл, получаемый кислородно-конвертерным процессом, по качеству стал равноценным мартеновской стали, себестоимость стали снизилась на 20—25 %, производительность увеличилась на 25—30 %.
На сегодняшний день существует три основных режима работы конвертера: с полным дожиганием окиси углерода, с частичным и без дожигания СО.
Существует много разновидностей кислородно-конвертерного процесса, предназначенного для производства стали требуемого качества из чугунов различных составов: низко- и высокофосфористых, кремнистых и низкокремнистых, марганцовистых и высокомарганцовистых и т. п. Наибольшее распространение получил кислородно-конвертерный способ с верхней продувкой чугуна технически чистым кислородом (чистотой не менее 99,5 %, остальные 0,5 % — азот, аргон, криптон).