
- •1 Строение вещества. Закон Кулона. Диэлектрическая проницаемость. Электрическое поле.
- •1.1 Строение вещества
- •1.2 Закон Кулона
- •3 Магнитное поле. Магнетизм
- •3.4 Электромагнитная индукция. Правило Ленца
- •3.6 Взаимная индукция
- •3.7 Магнитное поле в веществе
- •4 Магнитные цепи
- •4.3 Расчет разветвленной однородной магнитной цепи
- •5.2 Получение синусоидальной эдс
- •5.3 Изображение синусоидальных эдс, напряжений и токов на плоскости декартовых координат
- •5.4 Векторное изображение синусоидально изменяющихся величин. Векторные диаграммы.
- •Действующая и средняя величины переменного тока
- •6 Элементы и параметры электрических цепей переменного тока
- •6.2 Цепь с индуктивностью
- •6.3 Цепь с емкостью
- •6.4 Последовательное соединение r, l, с
- •6.5 Параллельное соединение r, l, с
- •7 Трехфазные электрические цепи
- •7.1 Основные понятия и определения
- •7.2 Соединение фаз генератора и приемника звездой
- •7.3 Классификация приемников в трехфазной цепи
- •7.4 Четырехпроводная цепь
- •7.5 Симметричная нагрузка приемника
- •7.6 Несимметричная нагрузка приемника
- •7.7 Трехпроводная электрическая цепь
- •7.8 Соединение фаз генератора и приемника треугольником
- •7.9 Симметричная нагрузка
- •7.10 Несимметричная нагрузка приемника
- •Общие замечания к расчету трехфазных цепей
- •8 Мощность трехфазной цепи, ее расчет и измерение
- •8.1 Соединение потребителей звездой
- •8.2 Соединение потребителей треугольником
- •8.3 Измерение активной мощности в трехфазных цепях
- •8.4 Измерение активной мощности двумя ваттметрами
- •9 Асинхронные машины
- •9.1. История создания и область применения асинхронных двигателей
- •9.2. Устройство трёхфазной асинхронной машины
- •9.3. Получение вращающегося магнитного поля
- •9.4. Режимы работы трёхфазной асинхронной машины
- •Режим двигателя
- •9.5 Режим генератора
- •9.6 Режим электромагнитного тормоза
7.10 Несимметричная нагрузка приемника
В общем случае при несимметричной нагрузке Zab ≠ Zbc ≠ Zca. Обычно она возникает при питании от трехфазной сети однофазных приемников. Например, для нагрузки, рис. 3.15, фазные токи, углы сдвига фаз и фазные мощности будут в общем случае различными.
Рис. 3.15
Векторная диаграмма для случая, когда в фазе ab имеется активная нагрузка, в фазе bc – активно-индуктивная, а в фазе ca – активно-емкостная приведена на рис. 3.16, топографическая диаграмма – на рис. 3.17.
Рис. 3.16
Построение векторов линейных токов произведено в соответствии с выражениями
İA = İab - İca; İB = İbc - İab; İC = İca - İbc.
Рис. 3.17
Таким образом, при несимметричной нагрузке симметрия фазных токов İab, İbс, İca нарушается, поэтому линейные токи İA, İB, İC можно определить только расчетом по вышеприведенным уравнениям (3.20) или найти графическим путем из векторных диаграмм (рис. 3.16, 3.17).
Важной особенностью соединения фаз приемника треугольником является то, что при изменении сопротивления одной из фаз режим работы других фаз остается неизменным, так как линейные напряжения генератора являются постоянными. Будет изменяться только ток данной фазы и линейные токи в проводах линии, соединенных с этой фазой. Поэтому схема соединения треугольником широко используется для включения несимметричной нагрузки.
При расчете для несимметричной нагрузки сначала определяют значения фазных токов İab, İbc, İca и соответствующие им сдвиги фаз φab, φbc, φca. Затем определяют линейные токи с помощью уравнений (3.20) в комплексной форме или с помощью векторных диаграмм (рис. 3.16, 3.17).
Общие замечания к расчету трехфазных цепей
1. При расчете трехфазных цепей исходят из предположения, что генератор дает симметричную систему напряжений. На практике несимметрия нагрузки практически не влияет на систему напряжений генератора в том случае, если мощность нагрузки мала по сравнению с мощностью генератора или сети электроснабжения.
2. Схема соединения обмоток трехфазного генератора не предопределяет схему соединения нагрузки. Так, при соединении фаз генератора в звезду нагрузка может быть соединена в звезду с нейтральным проводом, в звезду без нейтрального провода или, наконец, в треугольник.
8 Мощность трехфазной цепи, ее расчет и измерение
В трехфазных цепях, так же как и в однофазных, пользуются понятиями активной, реактивной и полной мощностей.
8.1 Соединение потребителей звездой
В общем случае несимметричной нагрузки активная мощность трехфазного приемника равна сумме активных мощностей отдельных фаз
(3.23)
P = Pa + Pb + Pc,
где
(3.24)
Pa = Ua Ia cos φa; Pb = Ub Ib cos φb; Pc = Uc Ic cos φc; Ua, Ub, Uc; Ia, Ib, Ic – фазные напряжения и токи; φa, φb, φc – углы сдвига фаз между напряжением и током.
Реактивная мощность соответственно равна алгебраической сумме реактивных мощностей отдельных фаз
(3.25)
Q = Qa + Qb + Qc,
где
(3.26)
Qa = Ua Ia sin φa; Qb = Ub Ib sin φb; Qc = Uc Ic sin φc.
Полная мощность отдельных фаз
(3.27)
Sa = Ua Ia; Sb = Ub Ib; Sc = Uc Ic.
Полная мощность трехфазного приемника
(3.28)
.
При симметричной системе напряжений (Ua = Ub = Uc = UФ) и симметричной нагрузке (Ia = Ib = Ic = IФ; φa = φb = φc = φ) фазные мощности равны Pa = Pb = Pc = PФ = UФ IФ cos φ; Qa = Qb = Qc = QФ = UФ IФ sin φ.
Активная мощность симметричного трехфазного приемника
(3.29)
P = 3 PФ = 3 UФ IФ cos φ.
Аналогично выражается и реактивная мощность
(3.30)
Q = 3 QФ = 3 UФ IФ cos φ.
Полная мощность
(3.31)
S = 3 SФ = 3 UФ IФ.
Отсюда следует, что в трехфазной цепи при симметричной системе напряжений и симметричной нагрузке достаточно измерить мощность одной фазы и утроить результат.